A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Distillation Approach to Phase Equilibrium Measurements of Multicomponent Fluid Mixtures. | LitMetric

A Distillation Approach to Phase Equilibrium Measurements of Multicomponent Fluid Mixtures.

Energy Fuels

Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States.

Published: August 2019

By building on the Advanced Distillation Curve (ADC) approach to measuring the volatility of fuels and other fluid mixtures, the ADC with Reflux or ADCR technique was developed to address the difficulty of experimentally determining the vapor-liquid equilibrium of fluids containing many components. For fuels and other multicomponent mixtures, the ADCR collects data about the chemical compositions of both liquid and vapor phases across a range of temperatures, elucidating the two-phase region at constant pressure. Two simple mixtures were used to demonstrate the ADCR method: an -decane/-tetradecane binary and the Huber-Bruno surrogate, a ternary mixture designed to represent the volatility of an aviation turbine kerosene. These mixtures were chosen to test the method because they have been extensively studied and modeled in previous work. For both test fluids, the ADCR measurements of vapor-liquid equilibrium were in good agreement with model predictions. We conclude that the ADCR is a useful method for determining the behavior of fluid mixtures with many components. The experimental approach presented may support the development of fuels, design of separations, and forensic sciences that use vapor analysis, especially arson fire debris analysis, by providing quantitative data with well-characterized uncertainty describing the relationships between the vapor and condensed phases of a fuel subjected to thermal weathering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781486PMC
http://dx.doi.org/10.1021/acs.energyfuels.9b01366DOI Listing

Publication Analysis

Top Keywords

fluid mixtures
12
vapor-liquid equilibrium
8
adcr method
8
mixtures
6
adcr
5
distillation approach
4
approach phase
4
phase equilibrium
4
equilibrium measurements
4
measurements multicomponent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!