When cultured with autologous antigen-primed Leu-3+ lymphoblasts, Leu-2+ cells differentiate into suppressor T cells (Ts) that specifically inhibit the responses of fresh autologous Leu-3+ cells to the priming antigen. We have shown previously that the Leu-4/T3 (CD-3) molecular complex and HLA-A,B molecules on the surface of Leu-3+ inducer blasts are recognized by Leu-2+ Ts during their differentiation. This study examines the role of various cell surface molecules expressed by Leu-2+ Ts during the inductive and effector phases of suppression. Leu-2+ cells were treated in the absence of complement with a variety of monoclonal antibodies recognizing distinct human lymphoid antigens either before or after their activation with alloantigen-primed Leu-3+ blasts. Antibodies to Leu-2/T8 (CD-8) and lymphocyte function-associated antigen-1 (LFA-1) (CDw-18) molecules inhibited not only the generation but also the effector function of Leu-2+ Ts. Although antibodies to Leu-4/T3 (CD-3) and Leu-5/T11 (CD-2) molecules caused profound inhibition of the activation of Ts, these antibodies failed to inhibit the effector function of Ts. On the contrary, anti-Leu-4 antibody consistently augmented the suppressor effect of Ts. Antibodies directed against Leu-1/T1 (CD-5), Leu-3/T4 (CD-4), LFA-3, and class I (HLA-A,B,C) and class II (HLA-DR,DQ) major histocompatibility complex molecules had no effect on either the generation or the effector function of Ts. These results suggest the involvement of Leu-2/T8 (CD-8), Leu-4/T3 (CD-3), Leu-5/T11 (CD-2), and LFA-1 (CDw-18) molecules on the surfaces of Leu-2+ cells in the activation and effector functions of Ts.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!