The regulation of the proliferation and polarity of neural progenitors is crucial for the development of the brain cortex. Animal studies have implicated glycogen synthase kinase 3 (GSK3) as a pivotal regulator of both proliferation and polarity, yet the functional relevance of its signaling for the unique features of human corticogenesis remains to be elucidated. We harnessed human cortical brain organoids to probe the longitudinal impact of GSK3 inhibition through multiple developmental stages. Chronic GSK3 inhibition increased the proliferation of neural progenitors and caused massive derangement of cortical tissue architecture. Single-cell transcriptome profiling revealed a direct impact on early neurogenesis and uncovered a selective role of GSK3 in the regulation of glutamatergic lineages and outer radial glia output. Our dissection of the GSK3-dependent transcriptional network in human corticogenesis underscores the robustness of the programs determining neuronal identity independent of tissue architecture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893153PMC
http://dx.doi.org/10.1016/j.stemcr.2019.09.005DOI Listing

Publication Analysis

Top Keywords

human cortical
8
proliferation polarity
8
neural progenitors
8
human corticogenesis
8
gsk3 inhibition
8
tissue architecture
8
gsk3
5
human
4
cortical organoids
4
organoids expose
4

Similar Publications

After decades of inactivity throughout the Americas, western equine encephalitis virus (WEEV) recently re-emerged in South America, causing a large-scale outbreak in humans and horses. WEEV binds protocadherin 10 (PCDH10) as a receptor; however, nonpathogenic strains no longer bind human or equine PCDH10 but retain the ability to bind avian receptors. Highly virulent WEEV strains can also bind the very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) as alternative receptors.

View Article and Find Full Text PDF

Unlabelled: The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).

View Article and Find Full Text PDF

Background Obesity is postulated to be a high-risk factor for thrombosis along with the inherent hypercoagulability of pregnancy. The Confidential Review of Maternal Deaths (CRMD) found that thrombosis was one of the major causes of maternal deaths in Kerala. This study investigates the major risk factor - obesity and its association with thrombosis in our study setting, along with other risk factors.

View Article and Find Full Text PDF

A 31-year-old male patient with a history of sickle cell disease (SCD) with stage V chronic kidney disease (CKD) presented for a deceased donor kidney transplant. During surgery, the transplanted kidney showed mottling and limited cortical flow, raising concerns for an intraoperative sickle cell crisis versus hyperacute rejection. Postoperative imaging revealed decreased vascularity, and the patient was treated with RBC exchange.

View Article and Find Full Text PDF

Hemophagocytic lymphohistiocytosis (HLH) is a rare and potentially fatal hyperinflammatory syndrome characterized by dysregulated immune activation and systemic inflammation. Secondary HLH is often triggered by infections, with being an infrequently reported cause. Peripheral axonal neuropathy is a rare and poorly understood complication of HLH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!