L-carnitine supplementation attenuates NAFLD progression and cardiac dysfunction in a mouse model fed with methionine and choline-deficient diet.

Dig Liver Dis

Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy; Metabolism Research Center, IRCCS Policlinico San Donato, Milan, Italy. Electronic address:

Published: March 2020

Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disorder. NAFLD, associated lipotoxicity, fibrosis, oxidative stress, and altered mitochondrial metabolism, is responsible for systemic inflammation, which contributes to organ dysfunction in extrahepatic tissues, including the heart. We investigated the ability of L-carnitine (LC) to oppose the pathogenic mechanisms underlying NAFLD progression and associated heart dysfunction, in a mouse model of methionine-choline-deficient diet (MCDD). Mice were divided into three groups: namely, the control group (CONTR) fed with a regular diet and two groups fed with MCDD for 6 weeks. In the last 3 weeks, one of the MCDD groups received LC (200 mg/kg each day) through drinking water (MCDD + LC). The hepatic lipid accumulation and oxidative stress decreased after LC supplementation, which also reduced hepatic fibrosis via modulation of α-smooth muscle actin (αSMA), peroxisome-activated receptor gamma (PPARγ), and nuclear factor kappa B (NfƙB) expression. LC ameliorated systemic inflammation, mitigated cardiac reactive oxygen species (ROS) production, and prevented fibrosis progression by acting on signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated kinase 1-2 (ERK1-2), and αSMA. This study confirms the existence of a relationship between fatty liver disease and cardiac abnormalities and highlights the role of LC in controlling liver oxidative stress, steatosis, fibrosis, and NAFLD-associated cardiac dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dld.2019.09.002DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
nafld progression
8
cardiac dysfunction
8
dysfunction mouse
8
mouse model
8
fatty liver
8
liver disease
8
systemic inflammation
8
l-carnitine supplementation
4
supplementation attenuates
4

Similar Publications

Background: Cows that develop metritis experience dysbiosis of their uterine microbiome, where opportunistic pathogens overtake uterine commensals. An effective immune response is critical for maintaining uterine health. Nonetheless, periparturient cows experience immune dysregulation, which seems to be intensified by prepartum over-condition.

View Article and Find Full Text PDF

Background: Gallstone disease (GSD) is a prevalent gastrointestinal disorder, few studies have examined the combined effects of dietary and lifestyle factors on GSD. This study aims to investigate the relationship between oxidative balance score (OBS) and GSD, and explores the potential mediating role of oxidative stress.

Methods: Cross-sectional data from 6,196 participants in the NHANES 2017-2020 were analyzed.

View Article and Find Full Text PDF

Background: Elevated BHB levels are hypothesized to influence hepatic antioxidant enzyme expression and activity, contributing to oxidative response. However, the impact of BHB between 0.8 and 1.

View Article and Find Full Text PDF

Fluoxetine is used in the management of depression, anxiety and other mood disorders by increasing serotonin levels in the brain and can cause sexual side effects by changing the homeostasis of sex hormones and increasing oxidative stress. Since many men who take fluoxetine are of reproductive age and sperm are exposed to fluoxetine for a considerable time, this study aimed to examine the in vitro effects of fluoxetine on human sperm biochemical markers and sperm parameters. Semen samples from 30 fertile men were divided into three groups: a positive control group, a negative control group and a fluoxetine-treated group.

View Article and Find Full Text PDF

Colonization of Serendipita indica enhances resistance against Phoma arachidicola in Arachis hypogaea L.

World J Microbiol Biotechnol

January 2025

The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.

The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!