Snake venom of comprises of several types of enzymes, and among them, water-soluble proteolytic enzyme, phospholipase A2 (PLA), is noteworthy for its numerous adverse effects, such as cytotoxicity, cardiotoxicity, hemolytic, anti-coagulant, and hypotensive effects, including being highly potent as a neurotoxin. Limited anti-venom therapy (with their lower efficacy) has attracted considerable pharmacological interest to develop potent inhibitors of PLA. Thus, 34 experimentally proven and diverse synthetic inhibitors of PLA were screened primarily on the basis of Glide extra precision docking and MM-GBSA rescoring function. Then, ten potential hits were subjected to induced fit docking, in which top three potential inhibitors were considered, and those were found to interact with Ca, disulfide binding site, and phosphatidylcholine activation sites, thereby, possibly disrupting the catalytic activity of Ca as well as the inflammatory functions of PLA. These compounds showed positive remarks on various physiochemical properties and pharmacologically relevant descriptors. Gap energy and thermodynamic properties were investigated by employing density functional theory for all compounds to understand their chemical reactivity and thermodynamic stability. Molecular dynamics simulation was performed for 100 ns in order to evaluate the stability and binding modes of docked complexes, and the energy of binding was calculated through MM-PBSA analysis. On the whole, the proposed compounds could be used for targeted inhibition. Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2019.1680440DOI Listing

Publication Analysis

Top Keywords

potent inhibitors
8
binding modes
8
inhibitors pla
8
exploring potent
4
inhibitors
4
binding
4
inhibitors binding
4
modes phospholipase
4
phospholipase silico
4
silico investigation
4

Similar Publications

SBL-JP-0004: A promising dual inhibitor of JAK2 and PI3KCD against gastric cancer.

Oncol Res

December 2024

Department of Pathology, College of Medicine, King Khalid University, Abha, 62521, Saudi Arabia.

Background: Gastric cancer (GC) remains a global health burden and is often characterized by heterogeneous molecular profiles and resistance to conventional therapies. The phosphoinositide 3-kinase and PI3K and Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathways play pivotal roles in GC progression, making them attractive targets for therapeutic interventions.

Methods: This study applied a computational and molecular dynamics simulation approach to identify and characterize SBL-JP-0004 as a potential dual inhibitor of JAK2 and PI3KCD kinases.

View Article and Find Full Text PDF

Patterns of immune evasion in triple-negative breast cancer and new potential therapeutic targets: a review.

Front Immunol

December 2024

Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of progesterone and estrogen receptors and low (or absent) HER2 expression. TNBC accounts for 15-20% of all breast cancers. It is associated with younger age, a higher mutational burden, and an increased risk of recurrence and mortality.

View Article and Find Full Text PDF

Computational generation of cyclic peptide inhibitors using machine learning models requires large size training data sets often difficult to generate experimentally. Here we demonstrated that sequential combination of Random Forest Regression with the pseudolikelihood maximization Direct Coupling Analysis method and Monte Carlo simulation can effectively enhance the design pipeline of cyclic peptide inhibitors of a tumor-associated protease even for small experimental data sets. Further studies showed that such -evolved cyclic peptides are more potent than the best peptide inhibitors previously developed to this target.

View Article and Find Full Text PDF

Bicyclic polyprenylated acylphloroglucinol-related meroterpenoids as potent DRAK2 inhibitors from Hypericum patulum.

Phytochemistry

December 2024

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Pharmacy, Fudan University, Shanghai, 201203, China. Electronic address:

As a both edible and medicinal plant, Hypericum patulum (Hypericaceae) is used as a natural herbal tea, scented tea, and folk medicine. In this study, eight undescribed bicyclic polyprenylated acylphloroglucinol-related meroterpenoids named hyperpatins A-H, along with eight known ones, were isolated from this plant. Their structures were elucidated on the basis of spectroscopic techniques, chemical method, X-ray crystallographic experiments, and electronic circular dichroism analyses.

View Article and Find Full Text PDF

Design, synthesis, and pharmacological evaluation of triazine-based PI3K/mTOR inhibitors for the potential treatment of non-small cell lung cancer.

Eur J Med Chem

December 2024

School of Pharmacy, Hangzhou Medical College, Hangzhou, 310053, China; School of Pharmacy, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Dysregulated activation of the PI3K/AKT/mTOR pathway is crucial in the development of cancer, and disrupting it could potentially lead to cancer suppression, making it a viable strategy for cancer treatment. Here, as a consecutive work of our team, we described the identification and optimization of PI3K/mTOR inhibitors based on triazine scaffold, which exhibited potent PI3K/mTOR inhibitor activity. The systematically structure-activity relationship (SAR) results demonstrated that compound 5nh displayed high efficacy against PI3Kα and mTOR, with the IC values of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!