High-efficiency biodegradation of chloramphenicol by enriched bacterial consortia: Kinetics study and bacterial community characterization.

J Hazard Mater

Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, China. Electronic address:

Published: February 2020

The risk of environmental pollution caused by chloramphenicol has necessitated special attention. Biodegradation has tremendous potential for chloramphenicol removal in the environment. Six chloramphenicol-degrading consortia were acclimated under different culture conditions to investigate their chloramphenicol biodegradation behaviors, and the bacterial community structures were comprehensively characterized. The enriched consortia CL and CH which utilized chloramphenicol as their sole carbon and energy source could thoroughly degrade 120 mg/L chloramphenicol within 5 days, and the mineralization rate reached up to 90%. Chloramphenicol biodegradation kinetics by different enriched consortia fit the modified Gompertz model or the first-order decay model (R≥0.97). Consortia CL could almost completely degrade 1-500 mg/L CAP with a final mineralization rate of 87.8-91.7%. Chloramphenicol 3-acetate was identified to be a major intermediate of CAP biodegradation by metabolite analysis and enzyme activity assay. 16S rRNA sequencing analysis revealed that the diversities and abundances of the main genera in the enriched consortia were distinct from each other. Forty-one core OTUs belonging to 18 genera were the core bacteria which might be related to chloramphenicol biodegradation. Among them, the genera Sphingomonas, Chryseobacterium, Cupriavidus, Bradyrhizobium, Burkholderia, and Afipia with high abundance may play potential roles for chloramphenicol biodegradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.121344DOI Listing

Publication Analysis

Top Keywords

chloramphenicol biodegradation
16
enriched consortia
12
chloramphenicol
10
bacterial community
8
mineralization rate
8
consortia
6
biodegradation
6
high-efficiency biodegradation
4
biodegradation chloramphenicol
4
enriched
4

Similar Publications

Assessment of bacteriological and immunological markers in urinary tract infection and the effect of antibiotics on the isolated bacteria.

Cell Mol Biol (Noisy-le-grand)

January 2025

Laboratory of Plant Improvement and Valorization of Agro-resources, National School of Engineers of Sfax, University of Sfax, Sfax LR.16ES20, Tunisia.

Urinary tract infections (UTIs) are recognized as the second most common medical condition, following respiratory infections. Despite the availability of numerous efficacious antibiotics for the management of UTIs, the rising incidence of bacterial resistance presents significant challenges in the treatment of these infections. Bacteria are endowed with the ability to reproduce and develop resistance mechanisms against antibiotics.

View Article and Find Full Text PDF

Simultaneous determination of 50 antibiotic residues in plasma by HPLC-MS/MS.

Heliyon

December 2024

Biobank Facility, National Infrastructures for Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.

Exposure to low doses of antibiotics in organisms may have long-term effects on host growth and brain neurochemicals, which are achieved by disrupting the composition and metabolism of gut flora. Therefore, we should pay more attention to the use and management of antibiotics to protect human health and the ecological environment. Here, we developed a method of detecting 50 antibiotic residues simultaneously in human plasma using HPLC-MS/MS.

View Article and Find Full Text PDF

Mild ultrasound-assisted alkali de-esterification modified pectins: Characterization and structure-activity relationships in immunomodulatory effects.

Ultrason Sonochem

January 2025

College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China. Electronic address:

Apple pectin (AP), a well-established dietary fiber, offers significant health benefits, particularly in immunomodulation. However, the structure-activity relationship (SAR) in this context remains poorly understood. This study aimed to elucidate the impact of varying degrees of esterification (DE) on AP's SAR in immunomodulatory activity.

View Article and Find Full Text PDF

Mitochondrial mechanism of florfenicol-induced nonalcoholic fatty liver disease in zebrafish using multi-omics technology.

J Hazard Mater

December 2024

Key Laboratory of Agri-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Florfenicol (FF), a third-generation chloramphenicol antibiotic widely used in food-producing animals, has become a "pseudopersistent" environmental contaminant, raising concerns about its potential ecological and human health impacts. However, its bioaccumulation behavior and hepatotoxic mechanisms remain poorly understood. This study aims to address these gaps with a 28-day exposure experiment in adult zebrafish at 0.

View Article and Find Full Text PDF

Assessment of anti-MRSA activity of auranofin and florfenicol combination: a PK/PD analysis.

J Appl Microbiol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Guangzhou, 510642, China.

Aims: Methicillin-resistant Staphylococcus aureus (MRSA) is an important zoonotic pathogen with multidrug-resistant phenotypes increasingly prevalent in both human and veterinary clinics. This study evaluated the potential of auranofin (AF) as an antibiotic adjuvant to enhance the anti-MRSA activity of florfenicol (FFC) and established a pharmacokinetic/pharmacodynamic (PK/PD) model to compare the efficacy of FFC alone or in combination with AF against MRSA.

Methods And Results: We observed an increased susceptibility and significant synergistic effects of MRSA to FFC in the presence of AF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!