Polysorbates (PSs) are the most common surfactants in therapeutic protein formulations, and it is crucial to monitor their concentration along the life cycle of biopharmaceuticals. We developed a simple multi-well plate fluorescence-based assay for the rapid determination of PS20 and PS80 content in biopharmaceutical products. The method is based on the detection of the fluorescence emission intensity of the fluorescent dye 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate in the presence of PSs at concentrations below their critical micelle concentration. This method can be applied for PS content determination in protein formulations (≤100 mg/mL) without the need of a previous protein removal step. The 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate assay implemented in multi-well plate format is suitable for high-throughput concentration screening. It has a linear range from 0.00020% to 0.0025% (w/v) PS20, and the limits of detection and quantification were 0.00020% and 0.00055% (w/v), respectively. This assay is markedly more selective and shows no or lower interferences due to hydrophobic components (e.g., silicone oil) potentially present in finished products than the fluorescence micelle assay based on N-phenyl-1-naphthylamine. It also provides comparable results for the PS content in liquid chromatography with charged aerosol detection analysis with protein removal, providing a fast alternative.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2019.10.013DOI Listing

Publication Analysis

Top Keywords

biopharmaceutical products
8
fluorescent dye
8
protein formulations
8
multi-well plate
8
11'-dioctadecyl-333'3'-tetramethylindocarbocyanine perchlorate
8
protein removal
8
assay
5
novel high-throughput
4
high-throughput assay
4
assay polysorbate
4

Similar Publications

Addressing Water Scarcity to Achieve Climate Resilience and Human Health.

Integr Environ Assess Manag

January 2025

Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.

Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.

View Article and Find Full Text PDF

Unfolding the Potential of Pyrrole- and Indole-Based Allylidene Hydrazine Carboximidamides as Antimicrobial Agents.

ACS Infect Dis

January 2025

Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Vidya Vihar 333031, (RJ) India.

Antimicrobial drug resistance is a significant global health challenge, causing hundreds of thousands of deaths annually and severely impacting healthcare systems worldwide. Several reported antimicrobial compounds have a guanidine motif, as the positive charge on guanidine promotes cell lysis. Therefore, pyrrole- and indole-based allylidene hydrazine carboximidamide derivatives with guanidine motifs are proposed as antimicrobial agents that mimic cationic antimicrobial peptides (CAMPs).

View Article and Find Full Text PDF

Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.

View Article and Find Full Text PDF

Preserving fertility is important in men under radiation therapy because healthy cells are also affected by radiation. Supplementation with antioxidants is a controversial issue in this process. Designing a biocompatible delivery system containing hydrophobic antioxidants to release control may solve these disagreements.

View Article and Find Full Text PDF

Pyoderma gangrenosum (PG) is a rare neutrophilic dermatosis characterized by pustules that rapidly progress into ulcers that commonly affect the lower limbs. Recently, successful treatment of PG has been reported with anti-IL 17 treatments. However, there have also been several reports of "paradoxical" induction of new PG lesions after use of IL-17 inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!