PEGylation affects the self-assembling behaviour of amphiphilic octapeptides.

Int J Pharm

Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy. Electronic address:

Published: November 2019

Surfactant-like peptides are a class of amphiphilic macromolecules, which are able to self-assemble in water forming different supramolecular structures. Among them, octapeptides composed of six hydrophobic and two hydrophilic residues have attracted interest since they have a length similar to those of natural phospholipids. Supramolecular structures of different amphiphilic octapeptides have been widely reported, but no study has been performed aimed at investigating the effect of PEGylation on their self-assembling behaviour. The aim of the present work was to synthesize and characterise the self-assembling behaviour of PEGylated alanine- or valine based amphiphilic octapeptides (mPEG-DDAAAAAA and mPEG-DDVVVVVV) in comparison to the non-PEGylated ones (DDAAAAAA and DDVVVVVV). The self-aggregation process in ultrapure water was investigated by fluorescence spectroscopy, small angle neutron scattering (SANS), dynamic light scattering (DLS), while the secondary structure was assessed by circular dichroism. PEGylation markedly affects the self-assembling behaviour of these amphiphilic octapeptides in terms of both critical aggregation concentration (CAC) and shape of the formed supramolecular aggregates. Indeed, PEGylation increases CAC and prevents the self-aggregation into fibrillary supramolecular aggregates (as observed for non-PEGylated peptides), by promoting the formation of micelle-like structures (as demonstrated for valine-based octapeptide). On the other side, the secondary structure of peptides seems not to be affected by PEGylation. Overall, these results suggest that self-assembling behaviour of amphiphilic octapeptides can be modified by PEGylation, with a great potential impact for the future applications of these nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2019.118752DOI Listing

Publication Analysis

Top Keywords

self-assembling behaviour
20
amphiphilic octapeptides
20
pegylation self-assembling
12
behaviour amphiphilic
12
supramolecular structures
8
secondary structure
8
supramolecular aggregates
8
pegylation
6
amphiphilic
6
octapeptides
6

Similar Publications

Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).

View Article and Find Full Text PDF

In this study, we demonstrate a unique and promising approach to access peptide-based diverse nanostructures in a single gelator regime that is capable of exhibiting different surface topographies and variable physical properties, which, in turn, can effectively mimic the extracellular matrix (ECM) and regulate variable cellular responses. These diverse nanostructures represent different energy states in the free energy landscape, which have been created through different self-assembling pathways by providing variable energy inputs by simply altering the gelation induction temperature from 40 °C to 90 °C. The highly entangled network structure with long fibers was created by higher energy inputs, , inducing the gelation at a higher temperature in the 70-90 °C range, whereas the less entangled nanoscale network with short fibers was obtained at a lower gelation induction temperature of 40-60 °C.

View Article and Find Full Text PDF

Theoretical basis of all-optical modulation of a probe laser beam due to photothermal modulation of the aggregation state in organic dyes, with experimental proof of the principle.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Anhembi Morumbi University (UAM), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil; Center of Innovation, Technology and Education (CITE), Rodovia Dr Altino Bondensan 500, São José dos Campos 12247-016, SP, Brazil. Electronic address:

The inherent potential for self-assembly is a well-known attribute of organic dye molecules. This work takes advantage of the changes in dye photochemical and photophysical properties produced by the aggregation phenomenon, to investigate the behavior of all-optical modulation in molecular aggregates. The theoretical principles for a dual beam all-optical modulation, as well as the conception of an optical logic gate by exploring the aggregation phenomenon are discussed throughout the article.

View Article and Find Full Text PDF

With the development of nanotechnology, nano-functional units of different dimensions, morphologies, and sizes exhibit the potential for efficient microwave absorption (MA) performance. However, the multi-unit coupling enhancement mechanism triggered by the alignment and orientation of nano-functional units has been neglected, hindering the further development of microwave absorbing materials (MAMs). In this paper, two typical ZIF-derived nanomaterials are self-assembled into two-dimensional ordered polyhedral superstructures by the simple ice template method.

View Article and Find Full Text PDF

The ability to add bioactivities, such as cell signaling or ligand recognition, to biomaterials has generated the potential to include multiple bioactivities into a single material. In some cases, it is desirable to localize these activities to different areas of the biomaterial, creating functional patterns. While photolithography and 3D printing have been effective techniques for patterning functions in many materials, patterning remains a challenge in materials composed of protein, in part due to how these materials are artificially assembled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!