Expression and clinicopathologic significance of coxsackie-adenovirus receptor in oral squamous cell carcinoma.

Oral Surg Oral Med Oral Pathol Oral Radiol

The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China. Electronic address:

Published: February 2020

Objective: This study aimed to explore the relationship between the expression of the coxsackie-adenovirus receptor (CAR) in oral squamous cell carcinoma (OSCC) and the clinicopathologic parameters associated with the disease. The diagnostic and prognostic potential of CAR in OSCC was also investigated.

Study Design: Immunohistochemistry was performed on human tissue microarrays, containing 42 oral mucosa, 69 dysplasia, and 176 OSCC tissue sections, to reveal the expression pattern of CAR. Statistical analysis was used to determine the correlation between CAR expression and the patient survival rate as a measure of the prognostic value of CAR.

Results: CAR was overexpressed in human OSCC tissues (P = .002), and higher expression of CAR was associated with a lower survival rate, which was not statistically significant (P = .123). In addition, patients with OSCC in the human papillomavirus (HPV)-positive group showed significantly higher CAR expression compared with the HPV- negative group (P = .0491).

Conclusions: This study indicated that CAR expression was upregulated in human OSCC and that patients with OSCC with higher expression of CAR had a lower survival rate. Moreover, CAR expression may be associated with HPV infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.oooo.2019.08.013DOI Listing

Publication Analysis

Top Keywords

car expression
16
survival rate
12
car
10
expression
9
coxsackie-adenovirus receptor
8
oral squamous
8
squamous cell
8
cell carcinoma
8
human oscc
8
higher expression
8

Similar Publications

Background: Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients.

View Article and Find Full Text PDF

Chimeric antigen receptor with novel intracellular modules improves antitumor performance of T cells.

Signal Transduct Target Ther

January 2025

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.

The excessive cytokine release and limited persistence represent major challenges for chimeric antigen receptor T (CAR-T) cell therapy in diverse tumors. Conventional CARs employ an intracellular domain (ICD) from the ζ subunit of CD3 as a signaling module, and it is largely unknown how alternative CD3 chains potentially contribute to CAR design. Here, we obtained a series of CAR-T cells against HER2 and mesothelin using a domain comprising a single immunoreceptor tyrosine-based activation motif from different CD3 subunits as the ICD of CARs.

View Article and Find Full Text PDF

Obesity exacerbates the risk and aggressiveness of many types of cancer. Adipose tissue (AT) represents a prevalent component of the tumor microenvironment (TME) and contributes to cancer development and progression. Reciprocal communication between cancer and adipose cells leads to the generation of cancer-associated adipocytes (CAAs), which in turn foster tumor invasiveness by producing paracrine metabolites, adipocytokines, and growth factors.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) is an incurable plasma cell malignancy with increasing global incidence. Chimeric antigen receptor (CAR) T-cell therapy targeting BCMA has shown efficacy in relapsed or refractory MM, but it faces resistance due to antigen loss and the tumor microenvironment. Bispecific T-cell engaging (BITE) antibodies also encounter clinical challenges, including short half-lives requiring continuous infusion and potential toxicities.

View Article and Find Full Text PDF

Background: Adaptive cellular therapy (ACT), particularly chimeric antigen receptor (CAR)-T cell therapy, has been successful in the treatment of hemopoietic malignancies. However, poor trafficking of administered effector T cells to the tumor poses a great hurdle for this otherwise powerful therapeutic approach in solid cancers. Our previous study revealed that targeting CD93 normalizes tumor vascular functions to improve immune checkpoint blockade therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!