Previous studies have shown that sarcopenic obesity is highly prevalent in patients with chronic kidney disease (CKD). Here, the association between CKD and sarcopenic obesity were investigated. The 5/6 nephrectomy was performed to establish CKD in mice. Fluorescence-activated cell sorting (FACS), quantitative real-time PCR, ELISA kits assay, immunohistochemistry, and cell proliferation assay were carried out to investigate the condition of muscle loss and fatty infiltration were in CKD mice and the origin of adipocytes. Muscle atrophy occurred and adipogenic gene expression, Perilipin and FABP4 were markedly increased in the hind limb muscle of CKD mice. Results indicated that fibro/adipogenic progenitors (FAPs) are the precursor of adipocytes in the muscle of CKD mice. Meanwhile, the content of extracellular matrix protein CCN1 was notably increased in serum of CKD patients with sarcopenic obesity which was also found in muscle and serum of CKD mice. CCN1 induced the differentiation of FAPs into adipocytes. These results suggest that CKD mice are susceptible to sarcopenic obesity. CCN1 may be a novel activator of the differentiation of FAPs in CKD muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.10.047DOI Listing

Publication Analysis

Top Keywords

ckd mice
24
sarcopenic obesity
16
ckd
10
fibro/adipogenic progenitors
8
chronic kidney
8
kidney disease
8
adipocytes muscle
8
muscle ckd
8
serum ckd
8
differentiation faps
8

Similar Publications

Background: Chronic kidney disease (CKD) represents a significant global public health challenge. This study aims to identify biomarkers of renal fibrosis and elucidate the relationship between unilateral ureteral obstruction (UUO), immune infiltration, and cell death.

Methods: Gene expression matrices for UUO were retrieved from the gene expression omnibus (GSE36496, GSE79443, GSE217650, and GSE217654).

View Article and Find Full Text PDF

Ischemia reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and ultimately leads to renal fibrosis, primarily via the transforming growth factor-β (TGF-β) pathway. Leucine-rich alpha-2-glycoprotein 1 (LRG1), a novel modulator of the TGF-β pathway, has been implicated in the modulation of renal fibrosis by affecting the TGF-β/Smad3 signaling axis. However, the role of LRG1 in the transition from AKI to chronic kidney disease (CKD) remains unclear.

View Article and Find Full Text PDF

OTUB2 contributes to vascular calcification in chronic kidney disease via the YAP-mediated transcription of PFKFB3.

Theranostics

January 2025

Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.

Chronic kidney disease (CKD) is a global public health issue, with vascular calcification (VC) being a common and deadly complication. Despite its prevalence, the underlying mechanisms of VC remain unclear. In this study, we aimed to investigate whether and how Otubain-2 (OTUB2) contributes to VC.

View Article and Find Full Text PDF

The ability of the mammalian kidney to repair or regenerate after acute kidney injury (AKI) is very limited. The maladaptive repair of AKI promotes progression to chronic kidney disease (CKD). Therefore, new strategies to promote the repair/regeneration of injured renal tubules after AKI are urgently needed.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a worldwide public health problem. Podocyte damage is a hallmark of glomerular diseases including focal segmental glomerulosclerosis (FSGS) and one of the leading causes of CKD. Lysine methylation is a crucial post-translational modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!