Using game theory and decision decomposition to effectively discern and characterise bi-locus diseases.

Artif Intell Med

Interuniversity Institute for Bioinformatics in Brussels, ULB-VUB, 1050 Brussels, Belgium; Machine Learning Group, Université Libre de Bruxelles, 1050 Brussels, Belgium; Artificial Intelligence Lab, Vrije Universiteit Brussel, 1050 Brussels, Belgium. Electronic address:

Published: August 2019

In order to gain insight into oligogenic disorders, understanding those involving bi-locus variant combinations appears to be key. In prior work, we showed that features at multiple biological scales can already be used to discriminate among two types, i.e. disorders involving true digenic and modifier combinations. The current study expands this machine learning work towards dual molecular diagnosis cases, providing a classifier able to effectively distinguish between these three types. To reach this goal and gain an in-depth understanding of the decision process, game theory and tree decomposition techniques are applied to random forest predictors to investigate the relevance of feature combinations in the prediction. A machine learning model with high discrimination capabilities was developed, effectively differentiating the three classes in a biologically meaningful manner. Combining prediction interpretation and statistical analysis, we propose a biologically meaningful characterization of each class relying on specific feature strengths. Figuring out how biological characteristics shift samples towards one of three classes provides clinically relevant insight into the underlying biological processes as well as the disease itself.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2019.06.006DOI Listing

Publication Analysis

Top Keywords

game theory
8
machine learning
8
three classes
8
biologically meaningful
8
theory decision
4
decision decomposition
4
decomposition effectively
4
effectively discern
4
discern characterise
4
characterise bi-locus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!