The roles of S-nitrosylation and S-glutathionylation in Alzheimer's disease.

Methods Enzymol

Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Memory & Alzheimer's Center, Nashville, TN, United States; Vanderbilt Institute of Chemical Biology, Nashville, TN, United States; Vanderbilt Brain Institute, Nashville, TN, United States. Electronic address:

Published: June 2020

Alzheimer's disease (AD) is a debilitating dementia with complex pathophysiological alterations including modifications to endogenous cysteine. S-nitrosylation (SNO) is a well-studied posttranslational modification (PTM) in the context of AD while S-glutathionylation (PSSG) remains less studied. Excess reactive oxygen and reactive nitrogen species (ROS/RNS) directly or indirectly generate SNO and PSSG. SNO is dysregulated in AD and plays a pervasive role in processes such as protein function, cell signaling, metabolism, and apoptosis. Despite some studies into the role of SNO in AD, multiple identified SNO proteins lack deep investigation and SNO modifications outside of brain tissues are limited, leaving the full role of SNO in AD to be elucidated. PSSG homeostasis is perturbed in AD and may affect a myriad of cellular processes. Here we overview the role of nitric oxide (NO) in AD, discuss proteomic methodologies to investigate SNO and PSSG, and review SNO and PSSG in AD. A more thorough understanding of SNO, PSSG, and other cysteinyl PTMs in AD will be helpful for the development of novel therapeutics against neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908309PMC
http://dx.doi.org/10.1016/bs.mie.2019.08.004DOI Listing

Publication Analysis

Top Keywords

sno pssg
16
sno
10
alzheimer's disease
8
role sno
8
pssg
6
roles s-nitrosylation
4
s-nitrosylation s-glutathionylation
4
s-glutathionylation alzheimer's
4
disease alzheimer's
4
disease debilitating
4

Similar Publications

The roles of S-nitrosylation and S-glutathionylation in Alzheimer's disease.

Methods Enzymol

June 2020

Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Memory & Alzheimer's Center, Nashville, TN, United States; Vanderbilt Institute of Chemical Biology, Nashville, TN, United States; Vanderbilt Brain Institute, Nashville, TN, United States. Electronic address:

Alzheimer's disease (AD) is a debilitating dementia with complex pathophysiological alterations including modifications to endogenous cysteine. S-nitrosylation (SNO) is a well-studied posttranslational modification (PTM) in the context of AD while S-glutathionylation (PSSG) remains less studied. Excess reactive oxygen and reactive nitrogen species (ROS/RNS) directly or indirectly generate SNO and PSSG.

View Article and Find Full Text PDF

Nitrosative stress-induced S-glutathionylation of protein disulfide isomerase.

Methods Enzymol

April 2011

Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA.

Oxidative and nitrosative stress result in the accumulation of reactive oxygen and nitrogen species (ROS/RNS) which trigger redox-mediated signaling cascades through posttranslational modifications on cysteine residues, including S-nitrosylation (P-SNO) and S-glutathionylation (P-SSG). Protein disulfide isomerase (PDI) is the most abundant chaperone in the endoplasmic reticulum and facilitates protein folding via oxidoreductase activity. Prolonged or acute nitrosative stress blunts the activity of PDI through the formation of PDI-SNO and PDI-SSG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!