Purpose: To characterise the pattern of change of diffusional kurtosis imaging (DKI) parameters (including kurtosis and diffusion parameters) in both white matter and gray matter in normal brain development with a large sample of subjects from term-born neonates to 14-years old children.

Methods: Two hundred and eighteen normal children (136 male, 82 female) underwent conventional magnetic resonance imaging and DKI. Regions of interest (ROIs) were placed in 7 white matter areas and 4 gray matter areas. Then the DKI-derived parameters were automatically calculated, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), radial diffusivity (Dr), mean kurtosis (MK), axial kurtosis (Ka) and radial kurtosis (Kr). The correlation between the DKI parameters and ages were analyzed using nonlinear fit, and the rate of parameter change was computed compared to the baseline value of the neonates.

Results: For all ROIs in the white matter and gray matter, the FA, MK, Kr, Ka values increased with age, while the MD and Dr values decreased with age. The correlations were good to excellent, which changed rapidly within the first 2 years and relatively slowly after 2 years. The Da values in peripheral white matters and some gray matter structures (caudate nucleus and putamen) decreased with age. The amplitude of kurtosis parameters variation was greater than that of the diffusion parameters in both white matter and gray matter.

Conclusions: The DKI parameters correlated well with age, and kurtosis parameters showed a potential advantage in detecting the normal brain development of children.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2019.108690DOI Listing

Publication Analysis

Top Keywords

white matter
16
gray matter
16
brain development
12
dki parameters
12
matter gray
12
detecting normal
8
kurtosis
8
diffusional kurtosis
8
kurtosis imaging
8
imaging dki
8

Similar Publications

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.

Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.

View Article and Find Full Text PDF

Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.

Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.

View Article and Find Full Text PDF

Clinical Insights and Radiological Features on Multiple Sclerosis Comorbid with Migraine.

J Clin Med

January 2025

Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy.

Multiple sclerosis (MS) and migraine are neurological diseases, affecting young women. Migraine is the most prevalent type of headache in people with MS (pwMS). The aim of this review is to describe the clinical, radiological, and therapeutic features of MS and migraine comorbidity.

View Article and Find Full Text PDF

Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is frequently associated with long-term post-stroke cognitive impairment (PSCI) and dementia. While the mechanisms behind PSCI are not fully understood, the brain and cognitive reserve concepts are topics of ongoing research exploring the ability of individuals to maintain intact cognitive performance despite ischemic injuries. Brain reserve refers to the brain's structural capacity to compensate for damage, with markers like hippocampal atrophy and white matter lesions indicating reduced reserve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!