Alternative processing methods of hybrid porous scaffolds based on gelatin and chitosan.

J Mech Behav Biomed Mater

Departamento de Ingeniería Química, Universidad de Sevilla, Facultad de Física, 41012, Sevilla, Spain.

Published: February 2020

The present work focuses on the development of scaffolds based on gelatin and chitosan using different protocols based on the general processing of phase separation, derived from the fabrication of hydrogels and freeze-drying. The scaffolds were produced with 1 wt% of two different biopolymers, i.e. gelatin (GE) and chitosan (CH), and the influence of the ratio between the two polymers was analyzed, as well as three different processing methods. This analysis consisted in assessing their mechanical properties by strain and frequency sweep tests, and comparing their microstructure and fiber arrangement by means of porosimetry, scanning electron microscopy (SEM) and degree of crosslinking. The results obtained show that the properties of the scaffolds were strongly dependent on the proportion of the raw materials used, as well as on the processing method. As a result, it was found that synergy occurred when a 1:1 gelatin:chitosan ratio was used, and when the temperature was increased, since it favors the solubilization of biopolymers and their interaction during mixing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2019.103472DOI Listing

Publication Analysis

Top Keywords

gelatin chitosan
12
processing methods
8
scaffolds based
8
based gelatin
8
alternative processing
4
methods hybrid
4
hybrid porous
4
scaffolds
4
porous scaffolds
4
chitosan work
4

Similar Publications

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Bacteriophages hold promise for combating pathogenic bacteria in the human intestinal tract, but their therapeutic potential is limited by harsh stomach conditions, including low pH and digestive enzymes. This study aimed to develop a natural protective mechanism for orally administering phages to treat gastric infections caused by Klebsiella aerogenes. Results revealed that free phages became inactive at pH 3 without protective measures.

View Article and Find Full Text PDF

Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin.

View Article and Find Full Text PDF

A natural gelatin/casein hydrogel with on-demand adhesion via chitosan solution for wound healing.

Int J Biol Macromol

December 2024

Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China. Electronic address:

Adhesive hydrogels have been widely studied as wound dressings due to their excellent biocompatibility and biological activity. However, most designed hydrogels still exist limitations including potentially toxic monomer, complex preparation process and non-degradable property. Here, a natural and degradable gelatin/casein hydrogel was prepared by enzymatic cross-linking.

View Article and Find Full Text PDF

Progress on oxygen-releasing bioactive polymeric scaffolds in tissue engineering and biomedical treatment: A review.

Int J Biol Macromol

December 2024

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China. Electronic address:

Tissue engineering presents promising avenues for addressing issues related to tissue defects and regenerative medicine. However, the translational efficacy of tissue engineering in clinical settings remains limited, primarily due to the inadequate survival rates of implanted tissue scaffolds. This is attributed to the grafts' inability to adequately supply oxygen and their dependence on the diffusion of oxygen from surrounding tissues for tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!