Recent advances in modular co-culture engineering for synthesis of natural products.

Curr Opin Biotechnol

Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA. Electronic address:

Published: April 2020

AI Article Synopsis

  • Microbial production of natural products traditionally relies on single engineered organisms, which can lead to metabolic burdens due to resource allocation to complex biosynthetic pathways.
  • Modular co-culture engineering is a newer method that improves efficiency in producing natural products by using multiple microbial strains together.
  • This review focuses on advancements in using Escherichia coli for co-culture engineering and discusses potential future developments in this area.

Article Abstract

The microbial production of natural products has been traditionally accomplished in a single organism engineered to accommodate target biosynthetic pathways. Often times, such approaches result in large metabolic burdens as key cofactors, precursor metabolites and energy are channeled to pathways of structurally complex chemicals. Recently, modular co-culture engineering has emerged as a new approach to efficiently conduct heterologous biosynthesis and greatly enhance the production of natural products. This review highlights recent advances that leverage Escherichia coli-based modular co-culture engineering for making natural products. Potential future perspectives for studies in this promising field are addressed as well.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.copbio.2019.09.004DOI Listing

Publication Analysis

Top Keywords

natural products
16
modular co-culture
12
co-culture engineering
12
production natural
8
advances modular
4
engineering synthesis
4
natural
4
synthesis natural
4
products
4
products microbial
4

Similar Publications

Trends, challenges, and research pathways in emerging contaminants: a comprehensive bibliometric analysis.

Integr Environ Assess Manag

January 2025

Department of Civil and Environmental Engineering, Florida State University, Tallahassee, FL, United States.

The growing concern over environmental pollution has spurred extensive research into various contaminants impacting ecosystems and human health. Emerging contaminants (ECs), including pharmaceuticals, personal care products, endocrine-disrupting chemicals, nanomaterials, and microplastics, have garnered significant attention due to their persistence, bioaccumulation, and toxicity. This study presents a comprehensive bibliometric analysis of EC research, aiming to detail the research landscape, highlight significant contributions, and identify influential researchers and pivotal studies.

View Article and Find Full Text PDF

Preparation, Modification, Quantitation, and Dentin Biomodification Activity of Selectively Enriched Proanthocyanidins.

J Nat Prod

January 2025

Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States.

To date, quantitative analysis of proanthocyanidin (PAC) containing materials including plant extracts and fractions depends on colorimetric assays or phloroglucinolysis/thiolysis combined with UV-HPLC analysis. Such assays are of limited accuracy, particularly lack specificity, require extensive sample preparation and degradation, and need appropriate physical reference standards. To address this analytical challenge and toward our broader goal of developing new plant-sourced biomaterials that chemically and mechanically modulate the properties of dental tissue for clinical interventions, we have characterized 12 different PAC DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) materials.

View Article and Find Full Text PDF

Medicinal plants are products from natural sources that have found relevance in medicine for several decades. They are rich in bioactive compounds; thus, they are widely used to treat different ailments globally. Medicinal plants have provided hope for the health care industry as most are used to synthesize modern medicines currently used in the treatment of various diseases.

View Article and Find Full Text PDF

Unfolding the Potential of Pyrrole- and Indole-Based Allylidene Hydrazine Carboximidamides as Antimicrobial Agents.

ACS Infect Dis

January 2025

Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Vidya Vihar 333031, (RJ) India.

Antimicrobial drug resistance is a significant global health challenge, causing hundreds of thousands of deaths annually and severely impacting healthcare systems worldwide. Several reported antimicrobial compounds have a guanidine motif, as the positive charge on guanidine promotes cell lysis. Therefore, pyrrole- and indole-based allylidene hydrazine carboximidamide derivatives with guanidine motifs are proposed as antimicrobial agents that mimic cationic antimicrobial peptides (CAMPs).

View Article and Find Full Text PDF

Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!