Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pentamidine, diminazene and 4',6-diamidino-2-phenylindole (DAPI) are antiprotozoal diarylamidine compounds. In the present work, we have studied their action on native N-methyl-D-aspartate (NMDA) receptors in rat hippocampal pyramidal neurons. All three compounds inhibited NMDA receptors at -80 mV holding voltage with IC of 0.41 ± 0.08, 13 ± 3 and 3.1 ± 0.6 μM, respectively. The inhibition by pentamidine was strongly voltage-dependent, while that of DAPI was practically voltage-independent. Inhibition by diminazene had both voltage-dependent and voltage-independent components. Diminazene and DAPI demonstrated tail currents and overshoots suggesting "foot-in-the-door" mechanism of action. In contrast, pentamidine was partially trapped in the closed NMDA receptor channels. Such difference in the mechanism of action can be explained by the difference in the 3D structure of compounds. In the pentamidine molecule, two benzamidine groups are connected with a flexible linker, which allows the molecule to fold up and fit in the cavity of a closed NMDA receptor channel. Diminazene and DAPI, in contrast, have an extended form and could not be trapped.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.14589 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!