It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in , which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial genes and are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces expression. Disruption of leads to increased expression and enhances tumor formation whereas mutation of decreases expression and tumor formation. These results depict a remarkable mechanism by which taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825286 | PMC |
http://dx.doi.org/10.1073/pnas.1903695116 | DOI Listing |
Microbiology (Reading)
January 2025
Department of Biology, Tor Vergata University of Rome, Rome, Italy.
Nutritional immunity, a key component of the vertebrate innate immune response, involves the modulation of zinc availability to limit the growth of pathogens. counteracts host-imposed zinc starvation through metabolic adaptations, including reprogramming of gene expression and activating efficient metal uptake systems. To unravel how zinc shortage contributes to the complexity of bacterial adaptation to the host environment, it is critical to use model systems that mimic fundamental features of -related diseases in humans.
View Article and Find Full Text PDFCell Rep
January 2025
Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai 200025, China. Electronic address:
As an opportunistic pathogen, Pseudomonas aeruginosa can cause both acute and chronic infections that are notoriously difficult to treat. However, the mechanism underlying acute or chronic P. aeruginosa infection remains unclear.
View Article and Find Full Text PDFPLoS One
January 2025
SLAC National Accelerator Laboratory, Stanford University, Stanford, California, United States of America.
Protein-Protein Interactions (PPIs) are a key interface between virus and host, and these interactions are important to both viral reprogramming of the host and to host restriction of viral infection. In particular, viral-host PPI networks can be used to further our understanding of the molecular mechanisms of tissue specificity, host range, and virulence. At higher scales, viral-host PPI screening could also be used to screen for small-molecule antivirals that interfere with essential viral-host interactions, or to explore how the PPI networks between interacting viral and host genomes co-evolve.
View Article and Find Full Text PDFViruses
November 2024
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
Rice is a crucial staple food for over half the global population, and viral infections pose significant threats to rice yields. This study focuses on the Rice Stripe Virus (RSV), which is known to drastically reduce rice productivity. We employed RNA-seq and ribosome profiling to analyze the transcriptional and translational responses of RSV-infected rice seedlings.
View Article and Find Full Text PDFPathogens
November 2024
Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
The ESX-1 secretion system is critical for the virulence of as well as for conjugation in the saprophytic model . EsxB (CFP-10) and EsxA (ESAT-6) are secreted effectors required for the function of ESX-1 systems. While some transcription factors regulating the expression of and have been identified, little work has addressed their promoter structures or other determinants of their expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!