Evaluation of Nanoparticle Tracking Analysis for the Detection of Rod-Shaped Particles and Protein Aggregates.

J Pharm Sci

Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706. Electronic address:

Published: January 2020

Nanoparticle tracking analysis (NTA) is an important technique for measuring hydrodynamic size of globular biological particles including liposomes and viruses. Less attention has been paid to NTA of rod-like particles, despite their considerable interest. For example, amyloid fibrils and protofibrils are protein aggregates with rod-like morphology, diameters of 2-15 nm, and lengths from 50 nm to 1 μm, and linked to diseases including Alzheimer's and Parkinson's. We used NTA to measure the concentration and hydrodynamic size of gold nanorods (10 nm diameter, 35-250 nm length) and myosin (2 nm diameter, 160 nm length), as models of rod-like particles. Measured hydrodynamic diameters of gold nanorods were consistent with theoretical calculations, as long as particle concentration and solution conditions were controlled. Myosin monomers were invisible by NTA, but a small population of aggregates was detected. We combined NTA results with other light scattering data to gain insight into number and size distribution of protein solutions containing both monomer and aggregates. Finally, we demonstrated the utility of NTA and its limitations by characterizing aggregates of alpha-synuclein. Of note is the use of NTA to detect a change in morphology from compact to elongated by analyzing the ratio of hydrodynamic size to intensity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2019.10.006DOI Listing

Publication Analysis

Top Keywords

hydrodynamic size
12
nanoparticle tracking
8
tracking analysis
8
protein aggregates
8
rod-like particles
8
gold nanorods
8
nta
7
aggregates
5
evaluation nanoparticle
4
analysis detection
4

Similar Publications

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF

Medical and surgical treatments for cystic echinococcosis (CE) are challenged by various complications. This study evaluates in vitro protoscolicidal activity of piperine-loaded mesoporous silica nanoparticles (PIP-MSNs) against protoscoleces of Echinococcus granulosus. MSNs were prepared by adding tetraethyl orthosilicate to cetyltrimethylammonium bromide and NaOH, and then loaded with PIP.

View Article and Find Full Text PDF

Real-time monitoring by interferometric light microscopy of phage suspensions for personalised phage therapy.

Sci Rep

December 2024

Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.

Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.

View Article and Find Full Text PDF

Size-dependent Nanoparticle Accumulation In Venous Malformations.

J Vasc Anom (Phila)

December 2024

Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.

Objective: The current treatment of venous malformations (VMs) consists of medications with systemic toxicity and procedural interventions with high technical difficulty and risk of hemorrhage. Using nanoparticles (NPs) to enhance drug delivery to VMs could enhance efficacy and decrease systemic toxicity. NPs can accumulate in tissues with abnormal vasculature, a concept known as the enhanced permeation and retention (EPR) effect.

View Article and Find Full Text PDF

Novel Thermosensitive Small Multilamellar Lipid Nanoparticles with Promising Release Characteristics made by Dual Centrifugation.

Eur J Pharm Sci

December 2024

Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany; Andreas Hettich GmbH & Co. KG, 78532 Tuttlingen, Germany.

Thermosensitive liposomes (TSLs) have great potential for the selective delivery of cytostatic drugs to the tumor site with greatly reduced side effects. Here we report the discovery and characterization of new thermosensitive small multilamellar lipid nanoparticles (tSMLPs) with unusually high temperature selectivity. Furthermore, the temperature-dependent release of the fluorescent marker calcein from tSMLPs is enhanced by human serum albumin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!