Muscle development and lipid accumulation in muscle critically affect meat quality of livestock. However, the genetic factors underlying myofiber-type specification and intramuscular fat (IMF) accumulation remain to be elucidated. Using two independent intercrosses between Western commercial breeds and Korean native pigs (KNPs) and a joint linkage-linkage disequilibrium analysis, we identified a 488.1-kb region on porcine chromosome 12 that affects both reddish meat color (a*) and IMF. In this critical region, only the MYH3 gene, encoding myosin heavy chain 3, was found to be preferentially overexpressed in the skeletal muscle of KNPs. Subsequently, MYH3-transgenic mice demonstrated that this gene controls both myofiber-type specification and adipogenesis in skeletal muscle. We discovered a structural variant in the promotor/regulatory region of MYH3 for which Q allele carriers exhibited significantly higher values of a* and IMF than q allele carriers. Furthermore, chromatin immunoprecipitation and cotransfection assays showed that the structural variant in the 5'-flanking region of MYH3 abrogated the binding of the myogenic regulatory factors (MYF5, MYOD, MYOG, and MRF4). The allele distribution of MYH3 among pig populations worldwide indicated that the MYH3 Q allele is of Asian origin and likely predates domestication. In conclusion, we identified a functional regulatory sequence variant in porcine MYH3 that provides novel insights into the genetic basis of the regulation of myofiber type ratios and associated changes in IMF in pigs. The MYH3 variant can play an important role in improving pork quality in current breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788688 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1008279 | DOI Listing |
Int J Mol Sci
November 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
Head and neck paragangliomas (HNPGLs) are rare neoplasms that, along with pheochromocytomas and extra-adrenal paragangliomas, are associated with inherited mutations in at least 12 susceptibility genes in approximately 40% of cases. However, due to the rarity of HNPGLs, only a series of small-scale studies and individual cases have reported mutations in additional genes that may be involved in tumorigenesis. Consequently, numerous disease-causing mutations and genes responsible for the pathogenesis of HNPGLs remain poorly investigated.
View Article and Find Full Text PDFAnn Vasc Surg
January 2025
Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
Open Biol
August 2024
Organismal Biology and Anatomy, University of Chicago Biological Sciences Division, Chicago, IL 60637, USA.
Evolutionary novelties entail the origin of morphologies that enable new functions. These features can arise through changes to gene function and regulation. One key novelty is the fused rod at the end of the vertebral column in anurans, the urostyle.
View Article and Find Full Text PDFGenes (Basel)
January 2024
Department of Rehabilitation, Medical University of Warsaw, 02-091 Warsaw, Poland.
A disease associated with malfunction of the MYH3 gene is characterised by scoliosis, contractures of the V fingers, knees and elbows, dysplasia of the calf muscles, foot deformity and limb length asymmetry. The aim of this study was to identify the cause of musculoskeletal deformities in a three-generation Polish family by exome sequencing. The segregation of the newly described c.
View Article and Find Full Text PDFInt J Biol Macromol
March 2024
College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China. Electronic address:
The growth and development of bovine skeletal muscle and beef yield is closely intertwined. Our previous research found that forkhead box O1 (FOXO1) plays an important role in the regulation of beef muscle formation, but its specific mechanism is still unknown. In this study, we aimed to clarify the regulatory mechanism of FOXO1 in proliferation and differentiation of bovine skeletal muscle cells (BSMCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!