Regular monitoring of blood flow and pressure in vascular reconstructions or grafts would provide early warning of graft failure and improve salvage procedures. Based on biocompatible materials, we have developed a new type of thin, flexible pulsation sensor (FPS) which is wrapped around a graft to monitor blood pressure and flow. The FPS uses carbon black (CB) nanoparticles dispersed in polydimethylsiloxane (PDMS) as a piezoresistive sensor layer, which was encapsulated within structural PDMS layers and connected to stainless steel interconnect leads. Because the FPS is more flexible than natural arteries, veins, and synthetic vascular grafts, it can be wrapped around target conduits at the time of surgery and remain implanted for long-term monitoring. In this study, we analyze strain transduction from a blood vessel and characterize the electrical and mechanical response of CB-PDMS from 0-50% strain. An optimum concentration of 14% CB-PDMS was used to fabricate 300-μm thick FPS devices with elastic modulus under 500 kPa, strain range of over 50%, and gauge factor greater than 5. Sensors were tested in vitro on vascular grafts with flows of 0-1,100 mL/min. In vitro testing showed linear output to pulsatile flows and pressures. Cyclic testing demonstrated robust operation over hundreds of cardiac cycles, with ±2.6 mmHg variation in pressure readout. CB-PDMS composite material showed excellent potential in biologic strain sensing applications where a flexible sensor with large maximum strain range is needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944770PMC
http://dx.doi.org/10.1109/TBCAS.2019.2946519DOI Listing

Publication Analysis

Top Keywords

vascular grafts
8
strain range
8
strain
6
vascular
4
vascular pressure-flow
4
pressure-flow measurement
4
cb-pdms
4
measurement cb-pdms
4
flexible
4
cb-pdms flexible
4

Similar Publications

Background: Thoracic aortic endovascular repair (TEVAR) is the most commonly employed method for treating type B aortic dissection (TBAD). One of the primary challenges in TEVAR is the reconstruction of the left subclavian artery (LSA). Various revascularization strategies have been utilized, including branch stent techniques, fenestration techniques, chimney techniques, and hybrid techniques.

View Article and Find Full Text PDF

1-year patency of a novel biorestorative polymeric coronary artery bypass conduit.

Interdiscip Cardiovasc Thorac Surg

January 2025

Cardiac Surgery Department, Sanatorio Italiano, Asunción, Paraguay.

Coronary artery bypass graft surgery (CABG) remains the gold standard in the treatment of complex coronary artery disease (CAD). Saphenous vein grafts (SVG) are commonly used for the non-left anterior descending artery (LAD). However, SVG failure rates in CABG surgery have been reported to be as high as 30% at 1 year and ∼50% at 10 years.

View Article and Find Full Text PDF

: The parallel stent graft endovascular aortic repair (PGEVAR) technique is an off-the-shelf option used for elective complex abdominal aortic aneurysm repair with acceptable outcome results, as reported so far. The PGEVAR technique, using chimney or periscope parallel grafts, can also be used for patients with ruptured complex abdominal aortic aneurysms. However, only few data about the mid- to long-term outcomes are available.

View Article and Find Full Text PDF

Background/objectives: Magnesium plays a crucial role in immune function, influencing immunoglobulin synthesis, antibody-dependent cytolysis, and other immune processes. In renal transplant patients, magnesium deficiency is primarily induced by calcineurin inhibitor treatment, through the reduction of magnesium transporter proteins in the renal tubules, leading to magnesium loss.

Methods: To assess the correlation between serum magnesium levels and the long-term outcomes of renal graft and transplant recipients, we conducted a retrospective study on 87 patients who have had a transplant for more than 5 years, a period considered immunologically stable.

View Article and Find Full Text PDF

Arch Bare Metal Stent Grafting in Type I Aortic Dissections After Hemiarch Repair.

Ann Thorac Surg Short Rep

December 2024

Division of Cardiac Surgery, Inova Heart and Vascular Institute, Inova Health Systems, Falls Church, Virginia.

Background: DeBakey type I aortic dissections (AD) are most frequently treated with hemiarch repair. A subset of patients demonstrates persistent distal end-organ ischemia secondary to persistent true lumen (TL) compression. We describe the use of bare metal stent grafting across the residual arch dissection with the Zenith Dissection Endovascular Stent (ZDES, Cook Medical) in 7 patients with type I AD that was repaired in a hemiarch configuration with a compromised distal TL and organ malperfusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!