Motivation: Cancer classification based on gene expression profiles has provided insight on the causes of cancer and cancer treatment. Recently, machine learning-based approaches have been attempted in downstream cancer analysis to address the large differences in gene expression values, as determined by single-cell RNA sequencing (scRNA-seq).
Results: We designed cancer classifiers that can identify 21 types of cancers and normal tissues based on bulk RNA-seq as well as scRNA-seq data. Training was performed with 7398 cancer samples and 640 normal samples from 21 tumors and normal tissues in TCGA based on the 300 most significant genes expressed in each cancer. Then, we compared neural network (NN), support vector machine (SVM), k-nearest neighbors (kNN) and random forest (RF) methods. The NN performed consistently better than other methods. We further applied our approach to scRNA-seq transformed by kNN smoothing and found that our model successfully classified cancer types and normal samples.
Availability And Implementation: Cancer classification by neural network.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btz772 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!