"CAD-on" Interfaces - Fracture Mechanics Characterization.

J Prosthodont

Biomaterials, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.

Published: December 2019

Purpose: To apply fracture mechanics methodology to determine the interfacial fracture toughness of the interfaces present in "CAD-on" crowns consisting of CAD/CAM milled lithium disilicate veneers glass-fused to CAD/CAM milled yttrium oxide stabilized tetragonal zirconia polycrystal framework.

Materials And Methods: The notchless triangular prism specimen fracture toughness test was used to determine interfacial fracture toughness. Four groups, each consisting of (6 × 6 × 6 × 12) mm prisms (n = 22), were produced. Half-size [(6 × 6 × 6 × 6) mm] specimens of IPS e.max CAD and IPS e.max ZirCAD were approximated under vibration with Crystal Connect fusing glass and sintered according to manufacturer's guidelines to obtain the following three interfaces: (1) e.max CAD/Crystal Connect/e.max CAD (Group I); (2) Zir CAD/Crystal Connect/Zir CAD (Group II); and (3) Zir CAD/Crystal Connect/e.max CAD (Group III). For Group IV (control, based on the "press-on" veneering technique), half-size [(6 × 6 × 6 × 6) mm] IPS e.max ZirCAD prisms were coated with ZirLiner and pressed with IPS e.max ZirPress ingots to obtain (6 × 6 × 6 × 12) mm prisms. All specimens were tested using a computer controlled material testing machine. Results were analyzed with one-way ANOVA, Scheffé multiple means comparisons (α = 0.05) and Weibull statistics. All fractured surfaces were characterized with a light microscope. Selected fractured surfaces were characterized under a scanning electron microscope.

Results: All experimental groups demonstrated a cohesive mode of failure in the fusing glass layer. The number and size of defects appeared to correlate with the variability of fracture toughness values. There were no significant differences between the fracture toughness of the "CAD-on" interfaces (p = 0.052). The results suggested that the fracture toughness of Crystal Connect limited the interfacial fracture toughness values. The "CAD-on" fracture toughness value (Group III) was significantly greater than that of the ZirPress "press-on" control (Group IV) (p < 0.001).

Conclusion: The "CAD-on" process results in stronger bonding between veneer and framework, compared to conventional veneering. The clinical use of "CAD-on" crowns could therefore be advocated. The selection of any restorative material requires a thorough analysis of advantages, limitations and results from clinical studies to inform the clinical decision in a case-by-case approach.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jopr.13113DOI Listing

Publication Analysis

Top Keywords

fracture toughness
32
ips emax
16
interfacial fracture
12
cad group
12
fracture
10
"cad-on" interfaces
8
fracture mechanics
8
determine interfacial
8
toughness
8
"cad-on" crowns
8

Similar Publications

The effect of SiC and YO inclusion on microstructure and mechanical properties of Al 5052 composite fabricated through Friction Stir Process.

Heliyon

January 2025

AU-Sophisticated Testing and Instrumentation Centre (AU-STIC), CoE-Advanced Materials Synthesis (CoE-AMS), Department of Mechanical Engineering, Alliance School of Applied Engineering, Alliance University, Bengaluru, 562106, India.

A consistent research attempt to develop newer lightweight-high strength materials facilitates the automobile sector to excel in product efficiency. The present research is another endeavour to anchor the automobile industries by exploring novel composite. The different earth elements SiC and YO are utilised for the hybrid reinforcement of Al 5052 alloy in four different weight proportions.

View Article and Find Full Text PDF

Developing hydrogels with high conductivity and toughness a facile strategy is important yet challenging. Herein, we proposed a new strategy to develop conductive hydrogels by growing metal dendrites. Water-soluble Sn ions were soaked into the gel and then converted to Sn dendrites an electrochemical reaction; the excessive Sn ions were finally removed by water dialysis, accompanied by dramatic shrinkage of the gel.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Enhanced mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO, YO, and AlO as sintering aids.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Electronic address:

Silicon nitride (Si₃N₄) ceramics exhibit excellent mechanical properties and biocompatibility, making them highly suitable for biomedical applications, particularly in implants. In this study, the mechanical properties and bioactivity of Si₃N₄ ceramics with varying amounts of Y₂O₃-Al₂O₃-SiO₂ sintering aids were investigated. Increasing the sintering additive content from 4 wt% to 8 wt% substantially improved the bulk density of the ceramics, leading to notable enhancements in mechanical properties.

View Article and Find Full Text PDF

In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!