Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single nucleotide polymorphisms (SNPs) able to describe population differences can be used for important applications in livestock, including breed assignment of individual animals, authentication of mono-breed products and parentage verification among several other applications. To identify the most discriminating SNPs among thousands of markers in the available commercial SNP chip tools, several methods have been used. Random forest (RF) is a machine learning technique that has been proposed for this purpose. In this study, we used RF to analyse PorcineSNP60 BeadChip array genotyping data obtained from a total of 2737 pigs of 7 Italian pig breeds (3 cosmopolitan-derived breeds: Italian Large White, Italian Duroc and Italian Landrace, and 4 autochthonous breeds: Apulo-Calabrese, Casertana, Cinta Senese and Nero Siciliano) to identify breed informative and reduced SNP panels using the mean decrease in the Gini Index and the Mean Decrease in Accuracy parameters with stability evaluation. Other reduced informative SNP panels were obtained using Delta, Fixation index and principal component analysis statistics, and their performances were compared with those obtained using the RF-defined panels using the RF classification method and its derived Out Of Bag rates and correct prediction proportions. Therefore, the performances of a total of six reduced panels were evaluated. The correct assignment of the animals to its breed was close to 100% for all tested approaches. Porcine chromosome 8 harboured the largest number of selected SNPs across all panels. Many SNPs were included in genomic regions in which previous studies identified signatures of selection or genes (e.g. ESR1, KITL and LCORL) that could contribute to explain, at least in part, phenotypically or economically relevant traits that might differentiate cosmopolitan and autochthonous pig breeds. Random forest used as preselection statistics highlighted informative SNPs that were not the same as those identified by other methods. This might be due to specific features of this machine learning methodology. It will be interesting to explore if the adaptation of RF methods for the identification of selection signature regions could be able to describe population-specific features that are not captured by other approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1751731119002167 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!