Ischaemia impairs organ quality during preservation in a time-dependent manner, due to a lack of oxygen supply. Its impact on pancreas and islet transplantation outcome has been demonstrated by a correlation between cold ischaemia time and poor islet isolation efficiency. Our goal in the present study was to improve pancreas and islet quality using a novel natural oxygen carrier (M101, 2 g/L), which has been proven safe and efficient in other clinical applications, including kidney transplantation, and for several pre-clinical transplantation models. When M101 was added to the preservation solution of rat pancreas during ischaemia, a decrease in oxidative stress (ROS), necrosis (HMGB1), and cellular stress pathway (p38 MAPK)activity was observed. Freshly isolated islets had improved function when M101 was injected in the pancreas. Additionally, human pancreases exposed to M101 for 3 hours had an increase in complex 1 mitochondrial activity, as well as activation of AKT activity, a cell survival marker. Insulin secretion was also up-regulated for isolated islets. In summary, these results demonstrate a positive effect of the oxygen carrier M101 on rat and human pancreas during preservation, with an overall improvement in post-isolation islet quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850937PMC
http://dx.doi.org/10.1111/jcmm.14666DOI Listing

Publication Analysis

Top Keywords

oxygen carrier
12
carrier m101
12
rat human
8
human pancreas
8
pancreas ischaemia
8
pancreas islet
8
islet quality
8
isolated islets
8
m101
6
pancreas
6

Similar Publications

The transport of metabolites across the inner mitochondrial membrane (IMM) is crucial for maintaining energy balance and efficient distribution of metabolic intermediates between cellular compartments. Under abiotic stress, mitochondrial function becomes particularly critical, activating complex signaling pathways essential for plant stress responses. These pathways modulate stress-responsive gene expression, influencing key physiological processes such as cell respiration and senescence, helping plants adapt to stress.

View Article and Find Full Text PDF

The Potential Application of Nanocarriers in Delivering Topical Antioxidants.

Pharmaceuticals (Basel)

January 2025

Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia.

The imbalance in the production of reactive oxygen species (ROS) with endogenous antioxidant capacity leads to oxidative stress, which drives many disorders, especially in the skin. In such conditions, supplementing exogenous antioxidants may help the body prevent the negative effect of ROS. However, the skin, as the outermost barrier of the body, provides a perfect barricade, making the antioxidant delivery complicated.

View Article and Find Full Text PDF

Hearing loss is one of the most common sensory disorders in humans, and a large number of cases are due to ear cell damage caused by ototoxic drugs including anticancer agents, such as cisplatin. The recent literature reported that hearing loss is promoted by an excessive generation of reactive oxygen species (ROS) in cochlea cells, which causes oxidative stress. Recently, polysaccharides from the cyanobacterium showed many biological activities, including antioxidant activity, suggesting their potential use to combat hearing loss.

View Article and Find Full Text PDF

Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells.

Materials (Basel)

January 2025

Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.

View Article and Find Full Text PDF

Large Improvements in the Thermoelectric Properties of SnSe by Fast Cooling.

Materials (Basel)

January 2025

Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

As reported during the last five years, SnSe is one of the leading thermoelectric (TE) materials with a very low lattice thermal conductivity. However, its elements are not as heavy as those of classical thermoelectric materials like PbTe or BiTe. Its outstanding TE properties were revealed after repeated purification steps to minimize the amount of oxygen contamination, followed by spark plasma sintering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!