Neurodegenerative diseases (ND) represent a growing, global health crisis, one that lacks any disease-modifying therapeutic strategy. This critical need for new therapies must be met with an exhaustive approach to exploit all tools available. A yeast (Saccharomyces cerevisiae) model of α-synuclein toxicity-the protein causally linked to Parkinson's disease and other synucleinopathies-offers a powerful approach that takes advantage of the unique offerings of this system: tractable genetics, robust high-throughput screening strategies, unparalleled data repositories, powerful computational tools, and extensive evolutionary conservation of fundamental biological pathways. These attributes have enabled genetic and small molecule screens that have revealed toxic phenotypes and drug targets that translate directly to patient-derived iPSC neurons. Extending these insights, recent advances in genetic network analyses have generated the first "humanized" α-synuclein network, which has identified druggable proteins and led to validation of the toxic phenotypes in patient-derived cells. Unbiased phenotypic small molecule screens can identify compounds targeting critical proteins within α-synuclein networks. While identification of direct drug targets for phenotypic screen hits represents a bottleneck, high-throughput chemical genetic methods provide a means to uncover cellular targets and pathways for large numbers of compounds in parallel. Taken together, the yeast α-synuclein model and associated tools can reveal insights into underlying cellular pathologies, lead molecules and their cognate targets, and strategies to translate mechanisms of toxicity and cytoprotection into complex neuronal systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9736-7_24 | DOI Listing |
Org Biomol Chem
January 2025
School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
Dysfunction in the SHP1 enzyme can cause cancers and many diseases, so it is of great significance to develop novel small molecule SHP1 inhibitors. Through continuous monitoring of metabolic and targeted processes of SHP1 inhibitors in real-time, we can evaluate the effectiveness and toxicity of the inhibitors, further optimize drug design, and explore SHP1 biology. Indoloquinoxaline is an important class of N-containing heterocycle, which has been studied and applied in the pharmacological field and in optoelectronic materials.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
Improper use of antibiotics has led to the development of antimicrobial resistance, or "superbugs," outpacing the discovery of new antibiotics. The lack of rapid, high-throughput screening methods is a major bottleneck in discovery novel antibiotics. Traditional methods consume significant amounts of samples, making it challenging to discover new antibiotics from limited natural product extracts.
View Article and Find Full Text PDFTheranostics
January 2025
School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.
Ion channels, as functional molecules that regulate the flow of ions across cell membranes, have emerged as a promising target in cancer therapy due to their pivotal roles in cell proliferation, metastasis, apoptosis, drug resistance, and so on. Recently, increasing evidence suggests that dysregulation of ion channels is a common characteristic of cancer cells, contributing to their survival and the resistance to conventional therapies. For example, the aberrant expression of sodium (Na) and potassium ion (K) channels is significantly correlated with the sensitivity of chemotherapy drugs.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.
Endothelial-to-mesenchymal transition (EndMT) is a cellular reprogramming mechanism by which endothelial cells acquire a mesenchymal phenotype. Endothelial cell dysfunction is the initiating factor of atherosclerosis (AS). Increasing evidence suggests that EndMT contributes to the occurrence and progression of atherosclerotic lesions and plaque instability.
View Article and Find Full Text PDFJ Cancer
January 2025
Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China.
Targeted inhibition of mitochondrial oxidative phosphorylation (OXPHOS) complex generation is an emerging and promising cancer treatment strategy, but limited targets and specific inhibitors have been reported. Leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) is an atypical RNA-binding protein that regulates the stability of all 13 mitochondrial DNA-encoded mRNA (mt-mRNA) and thus participates in the synthesis of the OXPHOS complex. LRPPRC is also a prospective therapeutic target for lung adenocarcinoma, serving as a promising target for OXPHOS inhibition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!