The dynamics of aggregation and structural diversification of misfolded, host-encoded proteins in neurodegenerative diseases are poorly understood. In many of these disorders, including Alzheimer's, Parkinson's and prion diseases, the misfolded proteins are self-organized into conformationally distinct assemblies or strains. The existence of intrastrain structural heterogeneity is increasingly recognized. However, the underlying processes of emergence and coevolution of structurally distinct assemblies are not mechanistically understood. Here, we show that early prion replication generates two subsets of structurally different assemblies by two sequential processes of formation, regardless of the strain considered. The first process corresponds to a quaternary structural convergence, by reducing the parental strain polydispersity to generate small oligomers. The second process transforms these oligomers into larger ones, by a secondary autocatalytic templating pathway requiring the prion protein. This pathway provides mechanistic insights into prion structural diversification, a key determinant for prion adaptation and toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6778151 | PMC |
http://dx.doi.org/10.1038/s42003-019-0608-y | DOI Listing |
Biomedicines
November 2024
Universidad Europea de Madrid, Department of Nursing, Faculty of Medicine, Health and Sports, 28670 Madrid, Spain.
While the flat bones of the face, most of the cranial bones, and the clavicles are formed directly from sheets of undifferentiated mesenchymal cells, most bones in the human body are first formed as cartilage templates. Cartilage is subsequently replaced by bone via a very tightly regulated process termed endochondral ossification, which is led by chondrocytes of the growth plate (GP). This process requires continuous communication between chondrocytes and invading cell populations, including osteoblasts, osteoclasts, and vascular cells.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Polymer Science & Engineering, Sichuan University, Chengdu 610065, China. Electronic address:
While single-atom catalysts (SACs) have been extensively investigated as a high-atom-efficiency heterogeneous catalyst for peroxymonosulfate (PMS) oxidation reaction, the stable constructing and activation efficacy of the reaction sites remains less clarified. Herein, we employed gelatin as a N,O-bidentate ligand for Co (II) to form for a N-doped carbon precursor, while introducing NaCl as a template agent to induce the adoption of a Co-N conformation and disorganize the Co-O moiety. This approach facilitates uniform spatial isolation and atomic-level dispersion of Co atoms within the aerogel, effectively inhibiting the aggregation of Co during synthesis and enabling precise and controllable preparation of Co single-atom catalysts (SACs).
View Article and Find Full Text PDFBMC Vet Res
January 2025
National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
This study aims to explore the coding sequence (CDS) of the putative DUS gene in Eimeria media and assess its potential biological functions during the parasite's lifecycle. Initially, oocysts were isolated from fecal samples of rabbits infected with E. media, from which DNA and RNA were extracted.
View Article and Find Full Text PDFInflamm Res
January 2025
Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China.
Background: Traditional Chinese medicine (TCM) is a valuable resource for drug discovery and has demonstrated excellent efficacy in treating inflammatory diseases. This study aimed to develop a universal gene signature-based strategy for high-throughput discovery of anti-inflammatory drugs, especially Traditional Chinese medicine (TCM).
Methods: The disease gene signature of liposaccharide-stimulated THP-1 cells and drug gene signatures of 655 drug candidates were established via sequencing.
Mol Ther Nucleic Acids
March 2025
Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada.
Tay-Sachs disease is a fatal neurodegenerative disorder caused by mutations inactivating the metabolic enzyme HexA. The most common mutation is c.1278insTATC, a tandem 4-bp duplication disrupting expression by frameshift.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!