A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Choosing Clinical Variables for Risk Stratification Post-Acute Coronary Syndrome. | LitMetric

Choosing Clinical Variables for Risk Stratification Post-Acute Coronary Syndrome.

Sci Rep

Department of Electrical Engineering and Computer Science and Research Laboratory for Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.

Published: October 2019

Most risk stratification methods use expert opinion to identify a fixed number of clinical variables that have prognostic significance. In this study our goal was to develop improved metrics that utilize a variable number of input parameters. We first used Bootstrap Lasso Regression (BLR) - a Machine Learning method for selecting important variables - to identify a prognostic set of features that identify patients at high risk of death 6-months after presenting with an Acute Coronary Syndrome. Using data derived from the Global Registry of Acute Coronary Events (GRACE) we trained a logistic regression model using these features and evaluated its performance on a development set (N = 43,063) containing patients who have values for all features, and a separate dataset (N = 6,363) that contains patients who have missing feature values. The final model, Ridge Logistic Regression with Variable Inputs (RLRVI), uses imputation to estimate values for missing features. BLR identified 19 features, 8 of which appear in the GRACE score. RLRVI had modest, yet statistically significant, improvement over the standard GRACE score on both datasets. Moreover, for patients who are relatively low-risk (GRACE≤87), RLRVI had an AUC and Hazard Ratio of 0.754 and 6.27, respectively, vs. 0.688 and 2.46 for GRACE, (p < 0.007). RLRVI has improved discriminatory performance on patients who have values for the 8 GRACE features plus any subset of the 11 non-GRACE features. Our results demonstrate that BLR and data imputation can be used to obtain improved risk stratification metrics, particularly for patients who are classified as low risk using traditional methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787006PMC
http://dx.doi.org/10.1038/s41598-019-50933-3DOI Listing

Publication Analysis

Top Keywords

clinical variables
8
risk stratification
8
coronary syndrome
8
acute coronary
8
logistic regression
8
grace score
8
features
5
choosing clinical
4
variables risk
4
stratification post-acute
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!