Evaluation of sxtA and rDNA qPCR assays through monitoring of an inshore bloom of Alexandrium catenella Group 1.

Sci Rep

Woods Hole Oceanographic Institution, MS # 32, 266 Woods Hole Road, Woods Hole, Massachusetts, 02543, United States.

Published: October 2019

Alexandrium catenella (formerly A. tamarense Group 1, or A. fundyense) is the leading cause of Paralytic Shellfish Poisoning in North and South America, Europe, Africa, Australia and Asia. The quantification of A.catenella via sxtA, a gene involved in Paralytic Shellfish Toxin synthesis, may be a promising approach, but has not been evaluated in situ on blooms of A. catenella, in which cell abundances may vary from not detectable to in the order of 10 cells L. In this study, we compared sxtA assay performance to a qPCR assay targeted to a species-specific region of ribosomal DNA (rDNA) and an established fluorescent in situ hybridization (FISH) microscopy method. Passing-Bablok regression analyses revealed the sxtA assay to overestimate abundances when <5 cell equivalents A. catenella DNA were analysed, but otherwise was closer to microscopy estimates than the rDNA assay, which overestimated abundance across the full range of concentrations analysed, indicative of a copy number difference between the bloom population and a culture used for assay calibration a priori. In contrast, the sxtA assay performed more consistently, indicating less copy number variation. The sxtA assay was generally reliable, fast and effective in quantifying A. catenella and was predictive of PST contamination of shellfish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787220PMC
http://dx.doi.org/10.1038/s41598-019-51074-3DOI Listing

Publication Analysis

Top Keywords

alexandrium catenella
8
paralytic shellfish
8
sxta assay
8
evaluation sxta
4
sxta rdna
4
rdna qpcr
4
qpcr assays
4
assays monitoring
4
monitoring inshore
4
inshore bloom
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!