Purification of ethylene (CH), the largest-volume product of the chemical industry, currently involves energy-intensive processes such as chemisorption (CO removal), catalytic hydrogenation (CH conversion), and cryogenic distillation (CH separation). Although advanced physisorbent or membrane separation could lower the energy input, one-step removal of multiple impurities, especially trace impurities, has not been feasible. We introduce a synergistic sorbent separation method for the one-step production of polymer-grade CH from ternary (CH/CH/CH) or quaternary (CO/CH/CH/CH) gas mixtures with a series of physisorbents in a packed-bed geometry. We synthesized ultraselective microporous metal-organic materials that were readily regenerated, including one that was selective for CH over CO, CH, and CH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aax8666 | DOI Listing |
Anal Sci Adv
June 2025
Department of Chemical, Pharmaceutical, and Agricultural Sciences University of Ferrara Ferrara Italy.
Cannabis inflorescences represent an important source of many high-value bioactive specialized metabolites, among which the family of terpenes or terpenoids that are the largest classes of natural products known. Besides their biological activities either alone or synergistic with other terpenoids and/or cannabinoids, they are responsible for their distinctive flavour. In this study, we exploited the separation power and identification capabilities of comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC-MS) for the profiling of terpenes and terpenoids in cannabis inflorescences.
View Article and Find Full Text PDFMolecules
December 2024
School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China.
In this paper, the enhancement of thermochemical energy storage by alkali metal chloride salts-doped Ca-based sorbents is revealed by experiments and DFT calculations. The results indicate that NaCl and KCl doping increases the reaction rate and cycle stability. Compared to CaO, the conversion of NaCl-CaO and KCl-CaO after one cycle is increased by 59.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:
This study systematically assessed the performance of a newly developed solid-phase extraction (SPE) material, cellulose-supported aminated β-cyclodextrin polymer (amine-β-CDP@Cellulose), in determining 44 xenobiotics, encompassing endocrine-disrupting chemicals (EDCs), pharmaceuticals, and food additives in urine samples. The primary objective of the research was to synthesize a new sorbent, optimize the extraction protocol, and elucidate the underlying adsorption and desorption mechanisms. Following optimization, it was observed that amine-β-CDP@Cellulose achieved recoveries ranging from 80 % to 120 % for 28 of the 44 targeted xenobiotics, with only three compounds showing recoveries below 50 %.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, University of Delhi-110007, New Delhi, India.
Wastewater contamination by organic dyes, especially Rhodamine B (RhB), possess a significant environmental challenge. This study explores a novel bio sorbent for the removal of RhB dye from contaminated water, using chitosan trisodium citrate-modified magnetic nanoparticles (Fe₃O₄@CSTSC@PANI) coated with polyaniline. The nanocomposite was characterized by FT-IR, XRD, HRTEM, SEM, BET surface analysis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, University of Saskatchewan, 110 Science Place, Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada. Electronic address:
Flax fiber modified composite (FFMC) duplex systems with unique sorbent and antipathogen properties were developed by physisorption of chitosan onto modified flax fibers by a facile method. Complementary characterization of the FFMCs (Raman, NMR, and IR, SEM, XRD, TGA and BET analysis) revealed variable composite morphology with incremental chitosan doping and supramolecular interactions between the fiber substrate and immobilized chitosan. Dye adsorption profiles of FFMCs with Rose Bengal corroborated the role of physisorption with an adsorption capacity that rises to 17.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!