The promise of phase-change materials.

Science

Department of Electrical and Computer Engineering, Faculty of Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Alberta, Canada.

Published: October 2019

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aaz1129DOI Listing

Publication Analysis

Top Keywords

promise phase-change
4
phase-change materials
4
promise
1
materials
1

Similar Publications

Mid-infrared thermal radiation has attracted attention due to its wide range of applications. Compared to the static process of thermal emission, if thermal radiation can be dynamically controlled, it would be more suitable for practical applications. Herein, we designed a controllable thermal emitter based on phase change materials.

View Article and Find Full Text PDF

This study investigates the chemical, physical, and magnetic properties of Mn-Al-C type magnets, focusing on their corrosion resistance. The hot compaction process is used for densification, producing isotropic magnets. Microstructural analysis reveals undesirable features, such as phase decomposition and deformation.

View Article and Find Full Text PDF

investigation of layered TMGeTe alloys for phase-change applications.

Nanoscale

January 2025

Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.

Chalcogenide phase-change materials (PCMs) are among the most mature candidates for next-generation memory technology. Recently, CrGeTe (CrGT) emerged as a promising PCM due to its enhanced amorphous stability and fast crystallization for embedded memory applications. The amorphous stability of CrGT was attributed to the complex layered structure of the crystalline motifs needed to initiate crystallization.

View Article and Find Full Text PDF

IMPACT: In-Memory ComPuting Architecture based on Y-FlAsh Technology for Coalesced Tsetlin machine inference.

Philos Trans A Math Phys Eng Sci

January 2025

Microsystems Group, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.

The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process.

View Article and Find Full Text PDF

Solar Evaporator with Dual Gradient Heating Effect for Sustained and Efficient Desalination.

Small

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.

Solar desalination shows promise in tackling freshwater shortages, but challenges arise from the trade-off between water transportation and heat supply, affecting evaporators' efficiency and salt resistance. Additionally, intermittent nature of solar radiation significantly diminishes overall evaporative performance. This study presents dual-gradient heating solar evaporator for efficient desalination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!