Emodin promotes fibroblast apoptosis and prevents epidural fibrosis through PERK pathway in rats.

J Orthop Surg Res

Department of Orthopedics, Clinical Medical College of Yangzhou University, Orthopaedic Institute, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.

Published: October 2019

Background: Laminectomy is usually classed as a common orthopedic surgery, but postoperative epidural fibrosis often leads to less-than-desirable clinical outcomes. As demonstrated by prior studies, emodin (EMO) exerts an anti-fibrotic effect. Here, we carried out investigation into the inhibitory effect created by EMO application on epidural fibrosis after laminectomy in rats.

Methods: The paper conducts a series of experiment. In vitro, we observed the effect of EMO on fibroblasts by Cell Counting Kit-8 (CCK-8) assay. Apoptosis of fibroblasts induced by EMO was detected by western blot, TUNEL assay, and flow cytometry. The results revealed that EMO was capable of inducing fibroblast apoptosis, and the proteins of PERK pathway also changed accordingly. In vivo, the effect of EMO on epidural fibrosis in 12 male Sprague-Dawley rats was observed by histological staining.

Results: CCK-8 assay indicated that EMO was effective in reducing fibroblast viability in a time- and a dose-dependent manner. TUNEL assay and flow cytometry analysis have demonstrated that the apoptotic rate of fibroblasts increased as the EMO concentration rose. Western blot analysis proved that EMO promoted the relative expression of p-perk and p-eIF2α and that the expression of its downstream proteins CHOP and GRP78 was also enhanced. The expression of apoptotic protein Bax and cleaved PARP was upregulated, whereas the expression of anti-apoptotic protein Bcl-2 was downregulated. In addition, histological and immunohistochemical analysis demonstrated that EMO functioned to inhibit epidural fibrosis and increase GRP78 expression in fibrous tissue by promoting apoptosis of fibroblasts.

Conclusions: EMO could have inhibitory effect on epidural fibrosis in a concentration-dependent manner. The potential mechanism might be through PERK signaling pathway to promote fibroblast apoptosis. It has a possibility to be taken as a novel method for the treatment of epidural fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785852PMC
http://dx.doi.org/10.1186/s13018-019-1357-9DOI Listing

Publication Analysis

Top Keywords

epidural fibrosis
28
fibroblast apoptosis
12
emo
11
perk pathway
8
cck-8 assay
8
western blot
8
tunel assay
8
assay flow
8
flow cytometry
8
analysis demonstrated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!