Background: The Neacomys genus is predominantly found in the Amazon region, and belongs to the most diverse tribe of the Sigmodontinae subfamily (Rodentia, Cricetidae, Oryzomyini). The systematics of this genus and questions about its diversity and range have been investigated by morphological, molecular (Cytb and COI sequences) and karyotype analysis (classic cytogenetics and chromosome painting), which have revealed candidate species and new distribution areas. Here we analyzed four species of Neacomys by chromosome painting with Hylaeamys megacephalus (HME) whole-chromosome probes, and compared the results with two previously studied Neacomys species and with other taxa from Oryzomyini and Akodontini tribes that have been hybridized with HME probes. Maximum Parsimony (MP) analyses were performed with the PAUP and T.N.T. software packages, using a non-additive (unordered) multi-state character matrix, based on chromosomal morphology, number and syntenic blocks. We also compared the chromosomal phylogeny obtained in this study with molecular topologies (Cytb and COI) that included eastern Amazonian species of Neacomys, to define the phylogenetic relationships of these taxa.

Results: The comparative chromosome painting analysis of the seven karyotypes of the six species of Neacomys shows that their diversity is due to 17 fusion/fission events and one translocation, pericentric inversions in four syntenic blocks, and constitutive heterochromatin (CH) amplification/deletion of six syntenic autosomal blocks plus the X chromosome. The chromosomal phylogeny is consistent with the molecular relationships of species of Neacomys. We describe new karyotypes and expand the distribution area for species from eastern Amazonia and detect complex rearrangements by chromosome painting among the karyotypes.

Conclusions: Our phylogeny reflects the molecular relationships of the Akodontini and Oryzomyini taxa and supports the monophyly of Neacomys. This work presents new insights about the chromosomal evolution of this group, and we conclude that the karyotypic divergence is in accord with phylogenetic relationships.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785907PMC
http://dx.doi.org/10.1186/s12862-019-1515-zDOI Listing

Publication Analysis

Top Keywords

chromosome painting
20
species neacomys
16
chromosomal phylogeny
12
comparative chromosome
8
neacomys
8
species
8
neacomys species
8
eastern amazonia
8
cytb coi
8
syntenic blocks
8

Similar Publications

Galliformes and Anseriformes are two branches of the Galloanserae group, basal to other Neognathae. In contrast to Galliformes, Anseriformes have not been thoroughly researched by cytogenetic methods. This report is focused on representatives of Anseriformes and the evolution of their chromosome sets.

View Article and Find Full Text PDF

Meiotic crossovers revealed by differential visualization of homologous chromosomes using enhanced haplotype oligo-painting in cucumber.

Plant Biotechnol J

December 2024

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.

The interaction dynamics of homologous chromosomes during meiosis, such as recognition, pairing, synapsis, recombination, and segregation are vital for species fertility and genetic diversity within populations. Meiotic crossover (CO), a prominent feature of meiosis, ensures the faithful segregation of homologous chromosomes and enriches genetic diversity within a population. Nevertheless, visually distinguishing homologous chromosomes and COs remains an intractable challenge in cytological studies, particularly in non-model or plants with small genomes, limiting insights into meiotic dynamics.

View Article and Find Full Text PDF

Investigation of Astyanax mexicanus (Characiformes, Characidae) chromosome 1 structure reveals unmapped sequences and suggests conserved evolution.

PLoS One

November 2024

Departamento de Biologia Estrutural, Molecular e Genética, Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil.

Article Synopsis
  • - The Mexican tetra, Astyanax mexicanus, has evolved unique traits like pigment loss due to natural selection in cave habitats and serves as an important species for studying evolution, with a chromosome count of 2n = 50.
  • - Researchers utilized advanced techniques including whole chromosome isolation and sequencing to analyze the structure of a specific chromosome (chromosome 1) in A. mexicanus, contributing to the understanding of its genetic makeup.
  • - Findings showed strong conservation of chromosome features across related species, suggesting a shared evolutionary origin, and the gathered data can be useful for comparative studies in other fish species of the same family.
View Article and Find Full Text PDF

Whole-chromosome oligo-painting in licorice unveils interspecific chromosomal evolutionary relationships and possible origin of triploid genome species.

Plant J

December 2024

Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.

Article Synopsis
  • Licorice, specifically from the Glycyrrhiza genus, has a long history as a medicinal plant, but its genetic and evolutionary complexities are not fully understood.
  • Researchers developed whole-chromosome painting probes to analyze the chromosomes of licorice and found that the chromosomal structures have remained highly conserved over millions of years, with no significant rearrangements between species.
  • The study also identified a new triploid seed of G. glandulosa in China, indicating a polyploid evolutionary pathway, which challenges previous ideas that only diploid forms existed in nature.
View Article and Find Full Text PDF

Graphite: painting genomes using a colored de Bruijn graph.

NAR Genom Bioinform

September 2024

Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.

The recent growth of microbial sequence data allows comparisons at unprecedented scales, enabling the tracking of strains, mobile genetic elements, or genes. Querying a genome against a large reference database can easily yield thousands of matches that are tedious to interpret and pose computational challenges. We developed Graphite that uses a colored de Bruijn graph (cDBG) to paint query genomes, selecting the local best matches along the full query length.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!