Cichlid fishes are the subject of scientific interest because of their rapid adaptive radiation, resulting in extensive ecological and taxonomic diversity. In this study, we examined 11 morphologically distinct cichlid species endemic to Barombi Mbo, the largest crater lake in western Cameroon, namely , , , , , , , , , , and . These species supposedly evolved via sympatric ecological speciation from a common ancestor, which colonized the lake no earlier than one million years ago. Here we present the first comparative cytogenetic analysis of cichlid species from Barombi Mbo Lake using both conventional (Giemsa staining, C-banding, and CMA/DAPI staining) and molecular (fluorescence hybridization with telomeric, 5S, and 28S rDNA probes) methods. We observed stability on both macro and micro-chromosomal levels. The diploid chromosome number was 2n = 44, and the karyotype was invariably composed of three pairs of meta/submetacentric and 19 pairs of subtelo/acrocentric chromosomes in all analysed species, with the same numbers of rDNA clusters and distribution of heterochromatin. The results suggest the evolutionary stability of chromosomal set; therefore, the large-scale chromosomal rearrangements seem to be unlikely associated with the sympatric speciation in Barombi Mbo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834198PMC
http://dx.doi.org/10.3390/ijms20204994DOI Listing

Publication Analysis

Top Keywords

barombi mbo
16
adaptive radiation
8
cichlid fishes
8
mbo lake
8
cichlid species
8
radiation chromosomal
4
chromosomal perspective
4
perspective evidence
4
evidence chromosome
4
chromosome set
4

Similar Publications

Haemoglobin is a key molecule for oxygen transport in vertebrates. It exhibits remarkable gene diversity in teleost fishes, reflecting adaptation to various aquatic environments. In this study, we present the dynamic evolution of haemoglobin subunit genes based on a comparison of high-quality genome assemblies of 24 vertebrate species, including 17 teleosts (of which six are cichlids).

View Article and Find Full Text PDF

Trophic niche partitioning is observed in many adaptive radiations and is hypothesized to be a central process underlying species divergence. However, patterns of dietary niche partitioning are inconsistent across radiations and there are few studies of niche partitioning in putative examples of sympatric speciation. Here, we conducted the first quantitative study of dietary niche partitioning using stomach contents and stable isotope analyses in one of the most celebrated examples of sympatric speciation: the cichlid radiation from crater lake Barombi Mbo, Cameroon.

View Article and Find Full Text PDF

Recently in Cameroon, two species belonging to Quadriacanthus: Q. anaspidoglanii Akoumba, Tombi & Bilong Bilong, 2017 and Q. euzeti Nack, Pariselle & Bilong Bilong, 2016 have been recorded on gill filaments of Notoglanidium macrostoma (Siluriformes, Claroteidae) in the Memou'ou River (Nyong Basin) and Papyrocranus afer (Osteoglossiformes, Notopteridae) in Lake Ossa, respectively.

View Article and Find Full Text PDF

Allopatric speciation was originally suggested to be the primary mechanism of animal speciation (Mayr, 1942; Figure 1). During allopatric speciation, populations diverge when gene flow is reduced across significant biogeographic barriers. Sympatric speciation, where species diverge while inhabiting the same location, was thought to be essentially impossible.

View Article and Find Full Text PDF

Cichlid fishes are the subject of scientific interest because of their rapid adaptive radiation, resulting in extensive ecological and taxonomic diversity. In this study, we examined 11 morphologically distinct cichlid species endemic to Barombi Mbo, the largest crater lake in western Cameroon, namely , , , , , , , , , , and . These species supposedly evolved via sympatric ecological speciation from a common ancestor, which colonized the lake no earlier than one million years ago.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!