The complement system is associated with various diseases such as inflammation or auto-immune diseases. Complement-targeted drugs could provide novel therapeutic intervention against the above diseases. C1s, a serine protease, plays an important role in the CS and could be an attractive target since it blocks the system at an early stage of the complement cascade. Designing C1 inhibitors is particularly challenging since known inhibitors are restricted to a narrow bioactive chemical space in addition selectivity over other serine proteases is an important requirement. The typical architecture of a small molecule inhibitor of C1s contains an amidine (or guanidine) residue, however, the discovery of non-amidine inhibitors might have high value, particularly if novel chemotypes and/or compounds displaying improved selectivity are identified. We applied various virtual screening approaches to identify C1s focused libraries that lack the amidine/guanidine functionalities, then the in silico generated libraries were evaluated by in vitro biological assays. While 3D structure-based methods were not suitable for virtual screening of C1s inhibitors, and a 2D similarity search did not lead to novel chemotypes, pharmacophore model generation allowed us to identify two novel chemotypes with submicromolar activities. In three screening rounds we tested altogether 89 compounds and identified 20 hit compounds (<10 μM activities; overall hit rate: 22.5%). The highest activity determined was 12 nM (1,2,4-triazole), while for the newly identified chemotypes (1,3-benzoxazin-4-one and thieno[2,3-][1,3]oxazin-4-one) it was 241 nM and 549 nM, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832932PMC
http://dx.doi.org/10.3390/molecules24203641DOI Listing

Publication Analysis

Top Keywords

novel chemotypes
12
c1s inhibitors
8
virtual screening
8
novel
5
c1s
5
inhibitors
5
design selection
4
selection novel
4
novel c1s
4
inhibitors silico
4

Similar Publications

Seven different enzymes comprise the galactosyltransferases family, of which β-1,4-galactosyltransferase I (β-1,4-GALT1) is the major contributor to galactosylation activity in cells. Since abnormalities in galactosylation are associated with many pathophysiological conditions, β-1,4-GALT1 is an interesting new target for drug discovery and molecular probe design. There are several known β-1,4-GALT1 inhibitors, but most of them suffer from low cell permeability and thus low in vivo activity.

View Article and Find Full Text PDF

Two structurally unrelated small molecule chemotypes, represented by compounds PAV-617 and PAV-951, with antiviral activity in cell culture against Mpox virus (formerly known as monkeypox virus) and human immunodeficiency virus (HIV) respectively, were studied for anti-cancer efficacy. Each exhibited apparent pan-cancer cytotoxicity with reasonable pharmacokinetics. Non-toxicity is demonstrated in a non-cancer cell line and in mice at doses achieving drug exposure at active concentrations.

View Article and Find Full Text PDF

Ligand Binding and Functional Effect of Novel Bicyclic α5 GABA Receptor Negative Allosteric Modulators.

J Chem Inf Model

December 2024

Medicinal Chemistry Laboratory II, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary.

The significant importance of GABA receptors in the treatment of central nervous system (CNS) disorders has been known for a long time. However, only in recent years have experimental protein structures been published that can open the door to understanding protein-ligand interactions and may effectively help the rational drug design for the future. In our previous work (Szabó, G.

View Article and Find Full Text PDF

Design, synthesis, and antitumor evaluation of quinazoline-4-tetrahydroquinoline chemotypes as novel tubulin polymerization inhibitors targeting the colchicine site.

Eur J Med Chem

February 2025

State Key Laboratory of Biotherapy and Cancer Center, Chinese Evidence-based Medicine Center, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China. Electronic address:

We designed, synthesized, and evaluated the antitumor activity of a series of novel quinazoline-4-(6-methoxytetrahydroquinoline) analogues. Among the tested compounds, 4a4 exhibited the most potent antiproliferative activities across four human cancer cell lines with half-maximal inhibitory concentration (IC) values ranging from 0.4 to 2.

View Article and Find Full Text PDF

Chemotypic diversity of bioprotective grass endophytes based on genome analyses, with new insights from a Mediterranean-climate region in Isfahan Province, Iran.

Mycologia

December 2024

Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.

species are systemic, often seed-transmissible symbionts (endophytes) of cool-season grasses (Poaceae subfam. Poöideae) that produce up to four classes of bioprotective alkaloids. Whereas haploid species may reproduce sexually and transmit between host plants (horizontally), many species are polyploid hybrids that are exclusively transmitted via seeds (vertically).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!