Zebrafish Models of Diamond-Blackfan Anemia: A Tool for Understanding the Disease Pathogenesis and Drug Discovery.

Pharmaceuticals (Basel)

Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.

Published: October 2019

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome characterized by red blood cell aplasia. Currently, mutations in 19 ribosomal protein genes have been identified in patients. However, the pathogenic mechanism of DBA remains unknown. Recently, several DBA models were generated in zebrafish () to elucidate the molecular pathogenesis of disease and to explore novel treatments. Zebrafish have strong advantages in drug discovery due to their rapid development and transparency during embryogenesis and their applicability to chemical screens. Together with mice, zebrafish have now become a powerful tool for studying disease mechanisms and drug discovery. In this review, we introduce recent advances in DBA drug development and discuss the usefulness of zebrafish as a disease model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958429PMC
http://dx.doi.org/10.3390/ph12040151DOI Listing

Publication Analysis

Top Keywords

drug discovery
12
diamond-blackfan anemia
8
zebrafish
5
zebrafish models
4
models diamond-blackfan
4
anemia tool
4
tool understanding
4
disease
4
understanding disease
4
disease pathogenesis
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Sage Bionetworks, Seattle, WA, USA.

Background: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Background: The ability to monitor cognitive trajectories over the course of trials can provide valuable insights into treatment efficacy. However, existing trial methods are limited in monitoring cognition in real-time and at high frequencies. Gameplay-based assessments hold promise as complementary cognitive tools.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Yonsei University, Incheon, Incheon, Korea, Republic of (South).

Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).

Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Yonsei University, Incheon, Incheon, Korea, Republic of (South).

Background: As amyloid-β (Aβ) aggregates are considered as the biomarkers and key factors in the pathology of Alzheimer's disease, there has been extensive investigation into Aβ-targeting compounds for the development of diagnostics and drug discovery related to the disorder. However, the polymorphic and heterogenous nature of Aβ aggregates impedes the structural understanding of their structure. Consequently it is a major challenge to develop new diagnostic and therapeutic development of AD and to study the mechanism of Aβ-targeting compounds.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder with limited treatment options. As it progresses, synapse degeneration is the most important feature contributing to cognitive dysfunction. Mitochondria supply synapses with ATP for neurotransmitter release and vesicle recycling and buffer calcium concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!