The rheology of high-cell density (HCD) cultures is an important parameter for its impact on mixing and sparging, process scale-up, and downstream unit operations in bioprocess development. In this work, time-dependent rheological properties of HCD LS46 cultures were monitored for microbial polyhydroxyalkanoate (PHA) production. As the cell density of the fed-batch cultivation increased (0 to 25 g·L cell dry mass, CDM), the apparent viscosity increased nearly nine-fold throughout the fed-batch process. The medium behaved as a nearly Newtonian fluid at lower cell densities, and became increasingly shear-thinning as the cell density increased. However, shear-thickening behavior was observed at shearing rates of approximately 75 rad·s or higher, and its onset increased with viscosity of the sample. The supernatant, which contained up to 9 g·L soluble organic material, contributed more to the observed viscosity effect than did the presence of cells. Owing to this behavior, the oxygen transfer performance of the bioreactor, for otherwise constant operating conditions, was reduced by 50% over the cultivation time. This study has shown that the dynamic rheology of HCD cultures is an important engineering parameter that may impact the final outcome in PHA cultivations. Understanding and anticipating this behavior and its biochemical origins could be important for improving overall productivity, yield, process scalability, and the efficacy of downstream processing unit operations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956342 | PMC |
http://dx.doi.org/10.3390/bioengineering6040093 | DOI Listing |
Psychiatry Clin Psychopharmacol
December 2024
Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, China.
Background: This study was designed to determine the effects of acceptance and commitment care in the treatment of aplastic anemia (AA) patients with recombinant human thrombopoietin (rhTPO).
Methods: The clinical records of 100 AA patients treated at our hospital from March 2021 to March 2023 were analyzed in the retrospective study. All patients received immunosuppressants and rhTPO.
Viruses
December 2024
1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece.
People with HIV (PWH) have an elevated risk of cardiovascular disease compared to those without HIV. This study aimed to investigate the relative serum expression of microRNAs (miRNAs) associated with arterial stiffness, a significant marker of cardiovascular disease. A total of 36 male PWH and 36 people without HIV, matched for age, body mass index, pack years, and dyslipidemia, were included in the study.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
: Accumulating evidence has confirmed the efficacy and safety of COVID-19 vaccines against SARS-CoV-2 infection. However, the effect of COVID-19 vaccination on immuno-virological parameters in people with HIV (PWH) is uncertain. : A total of 372 PWH treated at Beijing Ditan Hospital were included.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China.
This paper proposes a registration approach rooted in point cloud clustering and segmentation, named Clustering and Segmentation Normal Distribution Transform (CSNDT), with the aim of improving the scope and efficiency of point cloud registration. Traditional Normal Distribution Transform (NDT) algorithms face challenges during their initialization phase, leading to the loss of local feature information and erroneous mapping. To address these limitations, this paper proposes a method of adaptive cell partitioning.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Automotive Engineering, Faculty of Technology, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey.
Natural fiber-reinforced composites are composite materials composed of natural fibers, such as plant fibers and synthetic biopolymers. These environmentally friendly composites are biodegradable, renewable, cheap, lightweight, and low-density, attracting attention as eco-friendly alternatives to synthetic fiber-reinforced composites. In this study, natural fiber-reinforced polymer foam core layered composites were produced for the automotive industry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!