Due to various ecological problems, it is required to remove the ammonia nitrogen from wastewater. Industrial wastewater that was not subjected to any purification was used in this study, while most processes described in the literature were carried out using synthetically prepared solutions. The study investigated the removal of ammonium ions using ion exchange on various commercial minerals, in 3 h long batch ion-exchange experiments. Furthermore, research on the sodium chloride activation of the selected mineral was conducted. The screening of the mineral with the highest removal potential was conducted taking into account the adsorption capacity (q) and maximal removal efficiency (E), based on the NH ions changes determined using the selective electrode and spectrophotometric cuvette tests. The highest adsorption capacity (q = 4.92 mg/g) of ammonium ions with the maximum removal efficiency (52.3%) was obtained for bentonite, with a 0-0.05 mm particle size. After pretreatment with a 1 mol/L NaCl solution, maximum efficiency increments were observed (55.7%). The Langmuir adsorption isotherm corresponds well with the equilibrium adsorption data (R from 0.97 to 0.98), while the Freundlich model was found to be mismatched (R = 0.77). Based on these results it was concluded that natural sorbents may be effectively applied in wastewater treatment. It can be observed that as the size of sorbent particles gets lower, the adsorption capacity, as well as the removal efficiency, gets higher. The bentonite pretreatment with the NaCl solution did not result in the expected efficiency improvement. The 2 mol/L solution affected about 3.5% of the removal efficiency yield.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832831 | PMC |
http://dx.doi.org/10.3390/molecules24203633 | DOI Listing |
Sci Rep
January 2025
Department of Food Toxicology and Contaminant, National Research Centre, Dokki, Giza, Egypt.
This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity.
View Article and Find Full Text PDFChemSusChem
January 2025
Swinburne University of Technology - Hawthorn Campus: Swinburne University of Technology, Chemistry and Biotechnology, AUSTRALIA.
The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.
The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, Ireland.
The objective of this study was to investigate the effect of dynamic pulsation settings that increased the open phase and reduced the closed phase of pulsation during the peak milk flow period together with increasing the milk flow rate switch-point for cluster detachment on milking duration and teat condition after milking. The present study filled current gaps in knowledge by informing on the effects of both milk flow rate switch-points and dynamic pulsation together in one experiment, while presenting data on milking performance, strip milk, teat condition and vacuum levels in the cluster during milking. To this end, 4 treatments consisting of different milk flow rate switch-points and pulsator settings combinations were deployed across 4 groups of 24 cows for 8 weeks.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China. Electronic address:
The potential health hazards of micro/nanoplastics in food have become a significant concern. This study developed a Polydopamine-modified sodium alginate hydrogel (PMSAH) for removing microplastics in daily drinking water. The hydrogel's performance, characteristics, and kinetics for microplastic removal were systematically evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!