Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) has been identified as an autosomal-dominant disorder characterized by a complex neurological phenotype, with high prevalence of intellectual disability and optic nerve atrophy/hypoplasia. The syndrome is caused by loss-of-function mutations in NR2F1, which encodes a highly conserved nuclear receptor that serves as a transcriptional regulator. Previous investigations to understand the protein's role in neurodevelopment have mostly used mouse models with constitutive and tissue-specific homozygous knockout of Nr2f1. In order to represent the human disease more accurately, which is caused by heterozygous NR2F1 mutations, we investigated a heterozygous knockout mouse model and found that this model recapitulates some of the neurological phenotypes of BBSOAS, including altered learning/memory, hearing defects, neonatal hypotonia and decreased hippocampal volume. The mice showed altered fear memory, and further electrophysiological investigation in hippocampal slices revealed significantly reduced long-term potentiation and long-term depression. These results suggest that a deficit or alteration in hippocampal synaptic plasticity may contribute to the intellectual disability frequently seen in BBSOAS. RNA-sequencing (RNA-Seq) analysis revealed significant differential gene expression in the adult Nr2f1+/- hippocampus, including the up-regulation of multiple matrix metalloproteases, which are known to be critical for the development and the plasticity of the nervous system. Taken together, our studies highlight the important role of Nr2f1 in neurodevelopment. The discovery of impaired hippocampal synaptic plasticity in the heterozygous mouse model sheds light on the pathophysiology of altered memory and cognitive function in BBSOAS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104670 | PMC |
http://dx.doi.org/10.1093/hmg/ddz233 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.
The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.
View Article and Find Full Text PDFSci Rep
January 2025
Center on Translational Neuroscience, Institute of National Security, Minzu University of China, Beijing, China.
Postpartum depression (PPD) profoundly impacts the mental and physical health of women globally and is an incurable psychological disorder. Traditional pharmacological treatments often have strong side effects and may adversely affect infant health through breastfeeding, underscoring the critical need for natural and gentle treatment strategies. Sugemule-7, a traditional Chinese medicine comprising multiple natural plant ingredients, represents a potentially safer and more effective alternative.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy. Electronic address:
Cannabis derivatives are among the most widely used psychoactive substances in the world, which leads to growing medical concerns regarding its chronic use and abuse especially among adolescents. Exposure to THC during formative years produces long-term behavioral alterations that share similarities with symptoms of psychiatric and neurodevelopmental disorders. In this study, we have analyzed the functional and molecular mechanisms that might underlie these alterations.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Neurophysiology & Behaviour Lab, University of Castilla‐La Mancha, Ciudad Real, Spain
Background: A key neuropathological feature in the early stages of Alzheimer's disease (AD) involves hippocampal dysfunction arising from the accumulation of amyloid‐β (Aβ). Previously, our laboratory identified a shift in the synaptic plasticity long term potentiation (LTP)/long term depression (LTD) induction threshold, leading to memory deficits in a non‐transgenic murine model of early AD generated by intracerebroventricular (icv.) injections Aβ oligomers (oAβ), one of the most predominant pathogenetic factors in initial stages of the disease.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Wake Forest University School of Medicine, Winston‐Salem, NC, USA
Background: Older vervet monkeys are an excellent model for studying age‐associated Aβ deposition; however, they have high proportions of low‐affinity Aβ sites compared to human brains. Commonly used Aβ PET radiotracers are most useful in detecting high affinity Aβ fibrils. Measuring real‐time levels of low affinity Aβ fibrils through PET provides critical information of early AD progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!