Poor Diet, Stress, and Inactivity Converge to Form a "Perfect Storm" That Drives Alzheimer's Disease Pathogenesis.

Neurodegener Dis

Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,

Published: August 2020

North American incidence of Alzheimer's disease (AD) is expected to more than double over the coming generation. Although genetic factors surrounding the production and clearance of amyloid-β and phosphorylated tau proteins are known to be responsible for a subset of early-onset AD cases, they do not explain the pathogenesis of the far more prevalent sporadic late-onset variant of the disease. It is thus likely that lifestyle and environmental factors contribute to neurodegenerative processes implicated in the pathogenesis of AD. Herein, we review evidence that (1) excess sucrose consumption induces AD-associated liver pathologies and brain insulin resistance, (2) chronic stress overdrives activity of locus coeruleus neurons, leading to loss of function (a common event in neurodegeneration), (3) high-sugar diets and stress promote the loss of neuroprotective sex hormones in men and women, and (4) Western dietary trends set the stage for a lithium-deficient state. We propose that these factors may intersect as part of a "perfect storm" to contribute to the widespread prevalence of neurodegeneration and AD. In addition, we put forth the argument that exercise and supplementation with trace lithium can counteract many of the deleterious consequences associated with excessive caloric intake and perpetual stress. We conclude that lifestyle and environmental factors likely contribute to AD pathogenesis and that simple lifestyle and dietary changes can help counteract their effects.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000503451DOI Listing

Publication Analysis

Top Keywords

"perfect storm"
8
alzheimer's disease
8
lifestyle environmental
8
environmental factors
8
factors contribute
8
poor diet
4
stress
4
diet stress
4
stress inactivity
4
inactivity converge
4

Similar Publications

Growth decline in European beech associated with temperature-driven increase in reproductive allocation.

Proc Natl Acad Sci U S A

February 2025

Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland.

Climate change is impacting forests in complex ways, with indirect effects arising from interactions between tree growth and reproduction often overlooked. Our 43-y study of European beech () showed that rising summer temperatures since 2005 have led to more frequent seed production events. This shift increases reproductive effort but depletes the trees' stored resources due to insufficient recovery periods between seed crops.

View Article and Find Full Text PDF

Cancer and antiphospholipid syndrome (APS) independently increase thrombotic risk, and their coexistence can create a particularly hazardous prothrombotic state. This case report aims to highlight the complex challenges in managing concurrent thrombotic and hemorrhagic events in patients with a history of cancer and APS. The combination of these conditions presents a rare and difficult clinical scenario, requiring careful consideration in anticoagulation management.

View Article and Find Full Text PDF

Background: The interactions between virus and the host immune response are nuanced and intricate. The cytokine response arguably plays a central role in dictating the outcome of virus infection, balancing inflammation and healing, which is crucial to resolving infection without destructive immunopathologies.

Summary: Early innate immune responses are key to the generation of a beneficial or detrimental immune response.

View Article and Find Full Text PDF

Millets for a sustainable future.

J Exp Bot

December 2024

Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.

Our current agricultural system faces a perfect storm-climate change, burgeoning population, and unpredictable outbreaks like COVID-19 disrupt food production, particularly for vulnerable populations in developing countries. A paradigm shift in agriculture practices is needed to tackle these issues. One solution is the diversification of crop production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!