Surface modified Cerium(IV)-incorporated hydrous Fe(III) oxide (CIHFO) with β-cyclodextrin (β-CD) nanocomposite (βC-CIHFO) has been developed by in-situ wet chemical deposition method and characterized by means of some analytical tools such as FTIR, XRD,OM, SEM-EDX, TEM-EDX, AFM, TG-DTA and BET surface area analyses, resembled the irregular and undulated surface morphology consisting of microcrystals (∼2-3 nm) and mesoporous (∼6.022 nm) structure confirm surface amended CIHFO with β-CD. Enhanced fluoride adsorption capacity of βC-CIHFO (107.62 mg g) than pure CIHFO (32.62 mg g) at pH 7.0 is due to the plenty of surface -OH groups of β-CD, which plays a crucial role in enhancing fluoride adsorption capacity of CIHFO. Kinetic studies obeyed pseudo-second order kinetics and multilayer adsorption process, respectively. The adsorption process is reasonably spontaneous and endothermic in nature. Minute amount of βC-CIHFO (1.8 g L) can effectively treat fluoride containing natural groundwater samples (9.05 mg L) and achieved desirable permissible level in a while. The adsorbent was magnificently regenerated up to 75.19% with a solution of pH 13.0, and can be reused up to five cycles ensures sustainable use of proposed adsorbent for fluoride removal from aqueous media.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.121235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!