Epithelial cells experience constant mechanical forces, including fluid shear stress (FSS) on their apical surface. These forces alter both structure and function. While precise recapitulation of the complex mechanobiology of organs remains challenging, better understanding of the effect of mechanical stimuli is necessary towards the development of biorelevant in vitro models. This is especially relevant to organs-on-chip models which allow for fine control of the culture environment. In this study, the effects of the FSS on Caco-2 cell monolayers were systematically determined using a microfluidic device based on Hele-Shaw geometry. This approach allowed for a physiologically relevant range of FSS (from ∼0 to 0.03 dyn/cm) to be applied to the cells within a single device. Exposure to microfluidic FSS induced significant phenotypical and functional changes in Caco-2 cell monolayers as compared to cells grown in static conditions. The application of FSS significantly altered the production of mucus, expression of tight junctions, vacuolization, organization of cytoskeleton, formation of microvilli, mitochondrial activity and expression of cytochrome P450. In the context of the intestinal epithelium, this detailed understanding of the effects of the FSS will enable the realization of in vitro organs-on-chip models with well-defined and tailored characteristics to a specific purpose, including for drug and nanoparticle absorption studies. The Hele-Shaw approach used in this study could be readily applied to other cell types and adapted for a wide range of physiologically relevant FSS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2019.119521 | DOI Listing |
Sci Rep
January 2025
University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 680-749, Republic of Korea.
This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
Inferior vena cava (IVC) filters are vital in preventing pulmonary embolism (PE) by trapping large blood clots, especially in patients unsuitable for anticoagulation. In this study, the accuracy of two common simplifying assumptions in numerical studies of IVC filters-the rigid wall assumption and the laminar flow model-is examined, contrasting them with more realistic hyperelastic wall and turbulent flow models. Using fluid-structure interaction (FSI) and computational fluid dynamics (CFD) techniques, the investigation focuses on three hemodynamic parameters: time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT).
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomato-logy & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
Objective: The triply periodic minimal surface (TPMS) Gyroid porous scaffolds were built with identical porosity while varying pore sizes were used by fluid mechanics finite element analysis (FEA) to simulate the microenvironment. The effects of scaffolds with different pore sizes on cell adhesion, proliferation, and osteogenic differentiation were evaluated through calculating fluid velocity, wall shear stress, and permeability in the scaffolds.
Methods: Three types of gyroid porous scaffolds, with pore sizes of 400, 600 and 800 μm, were established by nTopology software.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!