Fully automated on-line analysis equipment is available for analysis of somatic cell count (SCC) at every milking in automatic milking systems. In addition to results from on-line cell counters (OCC), an array of additional cow-level and quarter-level factors considered important for udder health are recorded in these systems. However, the amount of variability in SCC that can be explained by available data is unknown, and so is the proportion of the variability that may be due to physiological or normal variability. Our aim was to increase our knowledge on OCC as an indicator for disturbances in udder health by assessing the variability in OCC in cows free from clinical mastitis. The first objective was to evaluate how much of the variability in OCC could be explained by different potential sources of variability, including intramammary infection (IMI) status (assessed by bacterial culture of quarter milk samples). The second objective was to evaluate the repeatability of the OCC sensor used in our study and the agreement between OCC values and SCC measured in a dairy herd improvement (DHI) laboratory. A longitudinal study was performed in the research herd of the Norwegian University of Life Sciences from January 5th 2016 to May 22nd 2017. Data from 62,471 milkings from 173 lactations in 129 cows were analyzed. We used ln-transformed OCC values (in 1000 cells/ml) as the outcome (lnOCC) in linear mixed models, with random intercepts at cow-level and lactation-level within cow. We were able to explain 15.0% of the variability in lnOCC with the following fixed effects: lactation stage, parity, milk yield, OCC in residual milk from the previous milking, inter-quarter difference between the highest and lowest conductivity, season, IMI status, and genetic lineage. When including the random intercepts, the degree of explanation was 55.2%. The individual variables explained only a small part of the total variability in lnOCC. We concluded that physiological or normal variability is probably responsible for a large part of the overall variability in OCC in cows without clinical mastitis. This is important to consider when using OCC data for research purposes or in decision-support tools. Sensor repeatability was evaluated by analyzing milk from the same sample multiple times. The coefficient of variation was 0.11 at an OCC level relevant for detection of subclinical mastitis. The agreement study showed a concordance correlation coefficient of 0.82 when comparing results from the OCC with results from a DHI laboratory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prevetmed.2019.104786DOI Listing

Publication Analysis

Top Keywords

occ
12
variability occ
12
variability
11
somatic cell
8
automatic milking
8
udder health
8
physiological normal
8
normal variability
8
occ cows
8
clinical mastitis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!