This study investigated the stability and catalytic activity of wheat straw biochar (WS), hardwood biochar (HW) and commercial activated carbon (AC) in hydrogen peroxide (HO) based oxidation system for degradation of model naphthenic acids compound, 1-methyl-1- cyclohexane carboxylic acid (MCCA). WS showed excellent catalytic activity for decomposition of HO and MCCA degradation as demonstrated by high HO decomposition rate (2.0*10 Ms), amount of hydroxyl (OH) radicals generated (182 mg/L) and degradation efficiency of MCCA (100% at C - 100 mg/L). 2-Methyl pentatonic acid was identified as reaction intermediate and 99% mineralization of MCCA was obtained within 4 h. The real wastewater conditions were simulated by addition of chloride (Cl) and bicarbonate ions (HCO) and found that lower concentrations of Cl and HCO have minimal influence on MCCA removal. Overall, biochar catalyzed HO based oxidation process has great potential and can be applied for degradation of NAs in oil-sand processed water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.125007 | DOI Listing |
Environ Sci Technol
January 2025
Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
Hexafluoropropylene oxide trimer acid (HFPO-TA, CF(CFOCF(CF))COOH) is widely used as an alternative to perfluorooctanoic acid (PFOA), but whether it is a safe alternative requires further evaluation. In this study, male mice were exposed to three dosages (0.56, 2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Tsinghua Shenzhen International Graduate School, CHINA.
The crosstalk of transition metal ions between the metal oxide cathode and Zn anode restricts the practical applications of aqueous zinc-ion batteries (ZIBs). Herein, we propose a decoupled electrolyte (DCE) consisting of a nonaqueous-phase (N-phase) anolyte and an aqueous-phase (A-phase) catholyte to prevent the crosstalk of Mn2+, thus extending the lifespan of MnO2-based ZIBs. Experimental measurements and theoretical modelling verify that trimethyl phosphate (TMP) not only synergistically works with NH4Cl in the N-phase anolyte to enable fast Zn2+ conduction while block Mn2+ diffusion toward anode, but also modifies the Zn2+ solvation structure to suppress the dendrite formation and corrosion on Zn anode.
View Article and Find Full Text PDFJ Neurosci Res
January 2025
Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India.
Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China.
For silicon-based devices using dielectric oxides doped with rare earth ions, their electroluminescence (EL) performance relies on the sufficient carrier injection. In this work, the atomic GaO layers are inserted within the Er-doped GeO nanofilms fabricated by atomic layer deposition (ALD). Both Ga(CH) and Ga(CH) could realize the ALD growth of GaO onto the as-deposited GeO nanofilm with unaffected deposition rates.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
KAIST - Korea Advanced Institute of Science and Technology, Department of Chemistry, Center for Nanomaterials and Chemical Reaction, IBS, 373-1, Guseong Dong, Yuseong Gu, 305-701, Daejeon, KOREA, REPUBLIC OF.
Understanding how TiO2 interacts with CO2 at the molecular level is crucial in the CO2 reduction toward value-added energy sources. Here, we report in-situ observations of the CO2 activation process on the reduced TiO2(110) surface at room temperature using ambient pressure scanning tunneling microscopy. We found that oxygen vacancies (Vo) diffuse dynamically along the bridging oxygen (Obr) rows of the TiO2(110) surface under ambient CO2(g) environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!