Electrocatalytic CO reduction reaction (CRR) is one of the most promising strategies to convert greenhouse gases to energy sources. Herein, the CRR was applied towards making C products (CO, HCOOH, CH OH, and CH ) on g-C N frameworks with single Ni, Co, and Fe introduction; this process was investigated by density functional theory. The structures of the electrocatalysts, CO adsorption configurations, and CO reduction mechanisms were systematically studied. Results showed that the single Ni, Co, and Fe located from the corner of the g-C N cavity to the center. Analyses of the adsorption configurations and electronic structures suggested that CO could be chemically adsorbed on Co-C N and Fe-C N , but physically adsorbed on Ni-C N . The H evolution reaction (HER), as a suppression of CRR, was investigated, and results showed that Ni-C N , Co-C N , and Fe-C N exhibited more CRR selectivity than HER. CRR proceeded via COOH and OCHO as initial protonation intermediates on Ni-C N and Co/Fe-C N , respectively, which resulted in different C products along quite different reaction pathways. Compared with Ni-C N and Fe-C N , Co-C N had more favorable CRR activity and selectivity for CH OH production with unique rate-limiting steps and lower limiting potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201902483 | DOI Listing |
Nanomaterials (Basel)
December 2024
Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China.
Cisplatin-based platinum compounds are important clinical chemotherapeutic agents that participate in most tumor chemotherapy regimens. Through density-functional theory calculations, the formation and stability of the inorganic oxide carrier, the mechanisms of the hydrolysis reaction of the activated platinum compound, and its binding mechanism with DNA bases can be studied. The higher the oxidation state of Pt (II to IV), the more electrons transfer from the magnesia-gold composite material to the platinum compound.
View Article and Find Full Text PDFACS Nano
December 2024
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China.
The development of high-performance bifunctional single-atom catalysts for use in applications, such as zinc-air batteries, is greatly impeded by mild oxygen reduction and evolution reactions (ORR and OER). Herein, we report a bifunctional oxygen electrocatalyst designed to overcome these limitations. The catalyst consists of well-dispersed low-nuclearity Co clusters and adjacent Co single atoms over a nitrogen-doped carbon matrix (Co/NC).
View Article and Find Full Text PDFNano Lett
December 2024
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
Developing artificial enzymes based on organic molecules or polymers for reactive oxygen biocatalysis has broad applicability. Here, inspired by heme-based enzyme systems, we construct the abiological iron group metal-based polyporphyrin (Ru/Os-coordinated porphyrin-based biocatalyst, Ru/Os-PorBC) to serve as a new generation of efficient and versatile reactive oxygen species (ROS)-related biocatalyst. Due to the structural benefits, including excellent electron configuration, appropriate bandgap, and optimized adsorption and activation of reaction intermediates, Ru/Os-PorBC shows unparalleled ROS-production activities regarding maximum reaction rate and turnover numbers, which also demonstrates superior pH and temperature adaptability compared to natural enzymes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
City University of Hong Kong, Department of Chemistry, Tat Chee Avenue, 000000, Kowloon, HONG KONG.
Electrocatalytic CO2 reduction (CO2R) to multi-carbon (C2+) products in strong acid presents a promising approach to mitigate the CO2 loss commonly encountered in alkaline and neutral systems. However, this process often suffers from low selectivity for C2+ products due to the competing C1 (e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
The irreversible chemistry of the Zn anode, attributed to parasitic reactions and the growth of zinc dendrites, is the bottleneck in the commercialization of aqueous zinc-ion batteries. Herein, an efficient strategy via constructing an organic protective layer configured with a honeycomb-like globular-covalent organic framework (G-COF) was constructed to enhance the interfacial stability of Zn anodes. Theoretical analyses disclose that the methoxy and imine groups in G-COF have more negative adsorption energy and electrostatic potential distribution, favorable Zn adsorption, and diffusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!