Stock price prediction is a popular yet challenging task and deep learning provides the means to conduct the mining for the different patterns that trigger its dynamic movement. In this paper, the task is to predict the close price for 25 companies enlisted at the Bucharest Stock Exchange, from a novel data set introduced herein. Towards this scope, two traditional deep learning architectures are designed in comparison: a long short-memory network and a temporal convolutional neural model. Based on their predictions, a trading strategy, whose decision to buy or sell depends on two different thresholds, is proposed. A hill climbing approach selects the optimal values for these parameters. The prediction of the two deep learning representatives used in the subsequent trading strategy leads to distinct facets of gain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786832 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223593 | PLOS |
Background: Pivotal Alzheimer's Disease (AD) trials typically require thousands of participants, resulting in long enrollment timelines and substantial costs. We leverage deep learning predictive models to create prognostic scores (forecasted control outcome) of trial participants and in combination with a linear statistical model to increase statistical power in randomized clinical trials (RCT). This is a straightforward extension of the traditional RCT analysis, allowing for ease of use in any clinical program.
View Article and Find Full Text PDFLecanemab, a humanized IgG1 monoclonal antibody that binds with high affinity to amyloid-beta (Aβ) protofibrils, was formally evaluated as a treatment for early Alzheimer's disease in a phase 2 study (Study 201) and the phase 3 Clarity AD study. These trials both included an 18-month, randomized study (core) and an open-label extension (OLE) phase where eligible participants received open-label lecanemab for up to 30 months to date. Clinical (CDR-SB, ADAS-Cog14, and ADCS-MCI-ADL), biomarker (PET, Aβ42/40 ratio, and ptau181) and safety outcomes were evaluated.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Relecura, Bangalore, karnataka, India.
Background: Clinical Dementia Rating (CDR) and its evaluation have been important nowadays as its prevalence in older ages after 60 years. Early identification of dementia can help the world to take preventive measures as most of them are treatable. The cellular Automata (CA) framework is a powerful tool in analyzing brain dynamics and modeling the prognosis of Alzheimer's disease.
View Article and Find Full Text PDFBackground: Lecanemab is a humanized IgG1 monoclonal antibody binding with high affinity to protofibrils of amyloid-beta (Aβ) protein. In clinical studies, lecanemab has been shown to reduce markers of amyloid in early symptomatic Alzheimer's disease (AD) and slow decline on clinical endpoints of cognition and function. Herein, a modeling approach was used to correlate amyloid reduction with change in rate of AD progression.
View Article and Find Full Text PDFBackground: Lecanemab is a humanized IgG1 monoclonal antibody that binds with high affinity to Aβ soluble protofibrils. In two clinical study evaluations of lecanemab, Clarity AD (NCT03887455) and lecanemab phase 2 study (Study 201, NCT01767311), the drug showed statistically significant reduction in disease progression during 18 months of treatment relative to placebo. Anti-amyloid immunotherapy can result in higher rates of "pseudo-atrophy" (ie, whole brain volume loss or ventricular enlargement) relative to disease progression observed in placebo-treated subjects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!