Purpose: MitraClip is the sole percutaneous device approved for functional mitral regurgitation (MR; FMR) but MR recurs in over one third of patients. As device-induced mechanical effects are a potential cause for MR recurrence, we tested the hypothesis that MitraClip increases leaflet stress and procedure-related strain in sub-valvular left ventricular (LV) myocardium in FMR associated with coronary disease (FMR-CAD).
Methods: Simulations were performed using finite element models of the LV + mitral valve based on MRI of 5 sheep with FMR-CAD. Models were modified to have a 20% increase in LV volume (↑LV_VOLUME) and MitraClip was simulated with contracting beam elements (virtual sutures) placed between nodes in the center edge of the anterior (AL) and posterior (PL) mitral leaflets. Effects of MitraClip on leaflet stress in the peri-MitraClip region of AL and PL, septo-lateral annular diameter (SLAD), and procedure-related radial strain (Err) in the sub-valvular myocardium were calculated.
Results: MitraClip increased peri-MitraClip leaflet stress at end-diastole (ED) by 22.3±7.1 kPa (p<0.0001) in AL and 14.8±1.2 kPa (p<0.0001) in PL. MitraClip decreased SLAD by 6.1±2.2 mm (p<0.0001) and increased Err in the sub-valvular lateral LV myocardium at ED by 0.09±0.04 (p<0.0001)). Furthermore, MitraClip in ↑LV_VOLUME was associated with persistent effects at ED but also at end-systole where peri-MitraClip leaflet stress was increased in AL by 31.9±14.4 kPa (p = 0.0268) and in PL by 22.5±23.7 kPa (p = 0.0101).
Conclusions: MitraClip for FMR-CAD increases mitral leaflet stress and radial strain in LV sub-valvular myocardium. Mechanical effects of MitraClip are augmented by LV enlargement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786765 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223472 | PLOS |
Comput Methods Programs Biomed
December 2024
College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China.
Background And Objective: Deep vein thrombosis (DVT) of the lower limbs is a critical global vascular disease. Accurately assessing and predicting the efficacy of DVT treatment remains a significant challenge due to a lack of understanding of the mechanisms by which the level of patient-specific embolization and the rate of drug injection affect thrombolytic therapy.
Methods: In this study, we used the computed tomographic venography (CTV) clinical method to obtain patient-specific parameters, and the flow-solid interaction (FSI) method combined with biochemical response modeling of thrombolysis to analyze patient-specific hemodynamic and biomechanical characteristics and to quantitatively assess the effects of three vessel embolism levels (VEL) versus two drug injection rates (DIR) on bifurcated femoral venous thrombolytic therapy.
J Phys Chem B
December 2024
Department of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States.
Lysophospholipids (LPLs) and host defense peptides (HDPs) are naturally occurring membrane-active agents that disrupt key membrane properties, including the hydrocarbon thickness, intrinsic curvature, and molecular packing. Although the membrane activity of these agents has been widely examined separately, their combined effects are largely unexplored. Here, we use experimental and computational tools to investigate how lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), an LPL of lower positive spontaneous curvature, influence the membrane activity of piscidin 1 (P1), an α-helical HDP from fish.
View Article and Find Full Text PDFInterdiscip Cardiovasc Thorac Surg
December 2024
Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Objectives: The common surgical treatment in patients with obstructive hypertrophic cardiomyopathy is septal myectomy. This involves resection of a segment of the myocardial septum and can be performed with and without concomitant anterior mitral valve leaflet extension (AMVLE). While both approaches have satisfying clinical outcomes, there is a lack of data regarding the added value of concomitant AMVLE.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China.
Membrane budding is vital for various cellular processes such as synaptic activity regulation, vesicle transport and release, and endocytosis/exocytosis. Although protein-mediated membrane budding has been extensively investigated, the effects of the lipid asymmetry of the two leaflets and the asymmetrically electrical environments of the cellular membrane on membrane budding remain elusive. In this work, using coarse-grained molecular dynamics simulations, we systematically investigate the impacts of lipid bilayer asymmetry and external electric fields mimicking the asymmetric membrane potential on the membrane budding.
View Article and Find Full Text PDFFree Radic Biol Med
November 2024
Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy. Electronic address:
In several physiopathological processes, phosphatidylserine (PS), normally sequestered to the inner leaflet of the plasma membrane, becomes exposed to the cell surface. In erythrocytes (RBC), PS externalization is a crucial event for the removal of aged/damaged cells but can also be associated with increased prothrombotic activity. Structurally related olive oil antioxidants, including hydroxytyrosol (HT), are able to significantly reduce the percentage of PS-exposing RBC, when cells are exposed to toxic compounds such as the heavy metal mercury (Hg).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!