A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Convolutional neural networks for wound detection: the role of artificial intelligence in wound care. | LitMetric

Objective: Telemedicine is an essential support system for clinical settings outside the hospital. Recently, the importance of the model for assessment of telemedicine (MAST) has been emphasised. The development of an eHealth-supported wound assessment system using artificial intelligence is awaited. This study explored whether or not wound segmentation of a diabetic foot ulcer (DFU) and a venous leg ulcer (VLU) by a convolutional neural network (CNN) was possible after being educated using sacral pressure ulcer (PU) data sets, and which CNN architecture was superior at segmentation.

Methods: CNNs with different algorithms and architectures were prepared. The four architectures were SegNet, LinkNet, U-Net and U-Net with the VGG16 Encoder Pre-Trained on ImageNet (Unet_VGG16). Each CNN learned the supervised data of sacral pressure ulcers (PUs).

Results: Among the four architectures, the best results were obtained with U-Net. U-Net demonstrated the second-highest accuracy in terms of the area under the curve (0.997) and a high specificity (0.943) and sensitivity (0.993), with the highest values obtained with Unet_VGG16. U-Net was also considered to be the most practical architecture and superior to the others in that the segmentation speed was faster than that of Unet_VGG16.

Conclusion: The U-Net CNN constructed using appropriately supervised data was capable of segmentation with high accuracy. These findings suggest that eHealth wound assessment using CNNs will be of practical use in the future.

Download full-text PDF

Source
http://dx.doi.org/10.12968/jowc.2019.28.Sup10.S13DOI Listing

Publication Analysis

Top Keywords

convolutional neural
8
artificial intelligence
8
wound assessment
8
sacral pressure
8
architecture superior
8
u-net u-net
8
supervised data
8
u-net
6
wound
5
neural networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!