Endothelial cell phenotype and endothelial function are regulated by hemodynamic forces, particularly wall shear stress (WSS). During a single bout of exercise, the specific exercise protocol can affect in-exercise WSS patterns and, consequently, endothelial function. MicroRNAs might provide a biomarker of in-exercise WSS pattern to indicate whether a specific exercise bout will have a positive effect on endothelial function. We evaluated the effect of acute interval (IT) and continuous (CON) in-exercise WSS patterns upon postexercise endothelial function and circulating microRNA (miR)-21 expression. Methods and results: 13 participants performed CON and 3 different IT exercise protocols matched for duration and intensity on separate days. Oxygen uptake, heart rate, and brachial artery blood flow were recorded throughout the exercise. Brachial artery flow-mediated dilation (FMD) was performed pre-exercise and 15 min postexercise. Plasma samples were acquired pre-exercise and 6 h postexercise to determine miR-21 expression. In-exercise shear rate (SR) patterns (a surrogate of WSS) differed according to the CON or IT work-rate profile. In-exercise anterograde SR was greater in CON than IT exercise ( < 0.05), but retrograde SR was equivalent between exercise protocols ( > 0.05). Oscillatory shear index was higher during IT versus CON exercise ( < 0.05). Postexercise FMD increased (pre: 7.08% ± 2.95%, post: 10.54% ± 4.24%, < 0.05), whereas miR-21 expression was unchanged (pre: 12.0% ± 20.7% cel-miR-39, post: 11.1 ± 19.3% cel-miR-39, > 0.05) with no effect of exercise protocol ( > 0.05). Conclusions: CON and IT exercise induced different SR patterns but equivalent improvements in acute endothelial function. The absence of change in miR-21 expression suggests that miR-21 is not a suitable biomarker of exercise-induced SR. Interval exercise has the potential to negatively impact vascular adaptations because of repeated oscillations in vascular shear. To our knowledge, we are the first to continuously assess exercise-induced shear throughout different acute exercise protocols and examine its relationship with acute endothelial function and a circulating biomarker of shear (miR-21). These experiments provide clear data indicating enhancement of the acute vascular response from differing interval exercise protocols, with the study also providing detailed vascular and shear responses for future reference.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00156.2019 | DOI Listing |
Tissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
Curr Cardiol Rep
January 2025
Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.
Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Pediatrics, Third People's Hospital of Longgang District of Shenzhen, Shenzhen, Guangdong 518020, China.
Objectives: To explore the role of berberine (BBR) in ameliorating coronary endothelial cell injury in Kawasaki disease (KD) by regulating the complement and coagulation cascade.
Methods: Human coronary artery endothelial cells (HCAEC) were divided into a healthy control group, a KD group, and a BBR treatment group (=3 for each group). The healthy control group and KD group were supplemented with 15% serum from healthy children and KD patients, respectively, while the BBR treatment group received 15% serum from KD patients followed by the addition of 20 mmol/L BBR.
J Transl Med
January 2025
Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!