The reaction between (FC)B═NMe, , and acetonitrile at low temperature in pentane yields a bora-acetonitrile rather than the expected coordination complex. This appears to arise from the two undergoing an ene reaction followed by a rearrangement analogous to a ketenimine-nitrile rearrangement. Computational studies indicate that mechanistic steps suggested for the latter require energies too large for the reaction to take place under the experimental conditions. Instead, a mechanism in which the ene reaction product is attacked by a second molecule of , followed by hydrogen transfer and decomposition, exhibits barriers lower than that for the ene reaction. The mechanism implies that the fragment of in the observed product is not the one that underwent the ene reaction. The ene reaction barrier is rate-determining, and it is low enough to conform to the experimental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.9b09403 | DOI Listing |
Light-driven biotransformations in recombinant cyanobacteria benefit from the atom-efficient regeneration of reaction equivalents like NADPH from water and light by oxygenic photosynthesis. The self-shading of photosynthetic cells throughout the reaction volume, along with the need for extended light paths, limits adequate light supply and significantly restricts the potential for upscaling. Here, we present a flat panel photobioreactor (1 cm optical path length) as a scalable system to provide efficient illumination at high cell densities.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany; Jena Center for Soft Matters (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany. Electronic address:
Nanomedicine, particularly gene delivery, holds immense potential and offers promising therapeutic options. Non-viral systems gained attention due to their binding capacity, stability and scalability. Among these, natural polysaccharides, such as pullulan, are advantageous in terms of sustainability, biocompatibility and potential degradability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments.
View Article and Find Full Text PDFSmall
January 2025
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China.
Fabricating visible-light-responsive metal-organic frameworks (MOFs) with high stability and effective catalytic functionality remains a long-term pursuit yet a great challenge. Herein, a strategy of increasing ligand and cluster connectivity is developed to construct highly stable fluorescein MOFs, La-CFL, presenting a new (4,8)-connected topological structure compared to Cd-FL constructed using 6-connected dinuclear clusters and 3-connected tritopic ligands. La(CFL) containers like Chinese "Ritual Wine Vessels (Jue)" resemble linear arrangements interconnected by the [La(COO)] clusters.
View Article and Find Full Text PDFChem Sci
January 2025
School of Chemical Engineering and Technology, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University 519082 Zhuhai China.
Traditional photosensitive polyimide (PSPI) materials require a high curing temperature and exhibit low transparency, limiting their applications in thermally sensitive optical devices. To overcome this challenge, soluble photosensitive polyimide resins were synthesized based on the structural design of a bio-based magnolol monomer. It is noteworthy that the PI photoresist, developed by using the as-prepared polyimides and non-toxic solvents (2-acetoxy-1-methoxypropane, PGEMA) and other additives, demonstrated an impressive low-temperature curing performance (180 °C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!