Crosslinked poly-N-isopropylacrylamide (pNIPAM) gels adapt to their environment by a unique transition from a flexible, swollen macromolecular network to a collapsed particle. pNIPAM gels are swollen in both, pure water and pure methanol (MeOH). However, a drastic volume loss is observed in mixtures of water and methanol over a wide composition range. This effect is referred to as cononsolvency. Cononsolvency couples the volume phase transition to the transport of the cosolvent into the polymeric network. So far, the mechanisms underlying cononsolvency have not been fully elucidated. To obtain insights on cononsolvency, Raman microspectroscopy was applied to capture spatially resolved spectra distinguishing between the surroundings and the inside of the gel. Here, we used Indirect Hard Modelling (IHM) for the spectral analysis. Mass balancing allowed the calculation of the solvent composition inside the pNIPAM gel. The results show an increased methanol fraction inside the collapsed gel as compared to its surroundings. Furthermore, the sensitivity of the vibrational bands of methanol to its local hydrogen bonding environment allow to derive information about the molecular interactions. The methanol peak shifts measured inside the gel point towards donor-type hydrogen bonds between methanol and the peptide group of pNIPAM in the cononsolvency-induced collapse. The presented data should enhance our understanding of cononsolvency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp04383g | DOI Listing |
Gels
December 2024
"Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania.
An imbalance in the body's pH or temperature may modify the immune response and result in ailments such as autoimmune disorders, infectious diseases, cancer, or diabetes. Dual pH- and thermo-responsive carriers are being evaluated as advanced drug delivery microdevices designed to release pharmaceuticals in response to external or internal stimuli. A novel drug delivery system formulated as hydrogel was developed by combining a pH-sensitive polymer (the "biosensor") with a thermosensitive polymer (the delivery component).
View Article and Find Full Text PDFGels
December 2024
Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico.
This study aims to design microgels that are thermo- and pH-sensitive for controlled doxorubicin (Dox) release in response to tumor microenvironment changes. N-isopropylacrylamide (NIPAAm) is widely used for thermoresponsive tumor-targeted drug delivery systems for the release of therapeutic payloads in response to temperature changes. Herein, a NIPAAm microgel (MP) that is responsive to temperature and pH was designed for the smart delivery of Dox.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
Wound healing faces challenges like inflammation, infection, and limited monitoring capabilities, and traditional dressings often lack the ability to promote healing or provide real-time wound status updates. Early pro-inflammatory responses help clear pathogens and damaged tissue, while timely anti-inflammatory modulation aids tissue regeneration, making sequential inflammation regulation crucial. Additionally, wound temperature, a key infection biomarker, enables real-time monitoring for effective management.
View Article and Find Full Text PDFGels
November 2024
Center for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo Street, Kaliningrad 236016, Russia.
For the first time, we introduced chemomechanical self-oscillating poly(N-isopropylacrylamide)-based gels containing catalytically active Fe or Ru complexes both as crosslinkers and as pendant groups. All the obtained gels exhibited sustained autonomous oscillations driven by the Belousov-Zhabotinsky reaction within their structure. The Ru complex-based gels also demonstrated pronounced chemomechanical oscillations; they periodically swelled/shrunk when the catalyst was reduced/oxidized.
View Article and Find Full Text PDFChem Commun (Camb)
November 2024
Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
Aquatic environments host various living organisms with active molecular systems, such as the enzymes in the thylakoid membrane that realise photosynthesis. Various challenges in achieving artificial photosynthesis, such as water splitting, have been studied using both inorganic and organic molecules. However, several problems persist, including diffusion-limited reactions and multiple redox reactions in the liquid phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!